On the parabolic Harnack inequality for non-local diffusion equations

  • Dominik Dier
  • Jukka Kemppainen
  • Juhana Siljander
  • Rico ZacherEmail author


We settle the open question concerning the Harnack inequality for globally positive solutions to non-local in time diffusion equations by constructing a counter-example for dimensions \(d\ge \beta \), where \(\beta \in (0,2]\) is the order of the equation with respect to the spatial variable. The equation can be non-local both in time and in space but for the counter-example it is important that the equation has a fractional time derivative. In this case, the fundamental solution is singular at the origin for all times \(t>0\) in dimensions \(d\ge \beta \). This underlines the markedly different behavior of time-fractional diffusion compared to the purely space-fractional case, where a local Harnack inequality is known. The key observation is that the memory strongly affects the estimates. In particular, if the initial data \(u_0 \in L^q_{loc}\) for q larger than the critical value \(\tfrac{d}{\beta }\) of the elliptic operator \((-\Delta )^{\beta /2}\), a non-local version of the Harnack inequality is still valid as we show. We also observe the critical dimension phenomenon already known from other contexts: the diffusion behavior is substantially different in higher dimensions than \(d=1\) provided \(\beta >1\), since we prove that the local Harnack inequality holds if \(d<\beta \).


Non-local diffusion Harnack inequality Riemann–Liouville derivative Fractional Laplacian Fundamental solution H functions Asymptotics 

Mathematics Subject Classification

Primary 35R11 Secondary 45K05 45M05 35C15 26A33 35B40 33C60 



J. S. was supported by the Academy of Finland Grant 259363 and a Väisälä foundation travel Grant. R. Z. was supported by a research grant of the German Research Foundation (DFG), GZ Za 547/4-1.


  1. 1.
    Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bass, R.F., Levin, D.A.: Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354(7), 2933–2953 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonforte, M., Sire, Y., Vázquez, J.L.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonforte, M.V., Juan, L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62(5), 597–638 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caffarelli, L., Silvestre, L.: Hölder regularity for generalized master equations with rough kernels. In: Advances in analysis: the legacy of Elias M Stein, vol. 40, pp. 63–83. Princeton University Press, Princeton, NJ (2014)zbMATHGoogle Scholar
  8. 8.
    Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics 28(1), 113–130 (1999)CrossRefGoogle Scholar
  9. 9.
    Chang-Lara, H.A., Dávila, G.: Hölder estimates for non-local parabolic equations with critical drift. J. Differ. Equ. 260(5), 4237–4284 (2016)CrossRefGoogle Scholar
  10. 10.
    Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on \(d\)-sets. Stoch. Process Appl. 108(1), 27–62 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199(2), 211–255 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Bateman, H.: Higher transcendental functions, vol. 1. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
  13. 13.
    Grafakos, L.: Classical and modern Fourier analysis. Pearson Education Inc, Upper Saddle River (2004)zbMATHGoogle Scholar
  14. 14.
    Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74, 031116 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jakubowski, V.G.: Nonlinear elliptic-parabolic integro-differential equations with \(L^1\)-data: existence, uniqueness, asymptotics. PhD thesis, Universität Duisburg-Essen, Fakultät für Mathematik (2002)Google Scholar
  16. 16.
    Jia, J., Peng, J., Yang, J.: Harnack’s inequality for a space-time fractional diffusion equation and applications to an inverse source problem. J. Differ. Equ. 262(8), 4415–4450 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kassmann, M.: A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris 349(11–12), 637–640 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations in \({\mathbb{R}}^d\). Math. Ann. 366(3–4), 941–979 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kemppainen, J., Siljander, J., Zacher, R.: Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equ. 263(1), 149–201 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kilbas, A.A., Saigo, M.: H-Transforms. Theory and Applications, vol. 9 of Analytical Methods and Special Functions. Charman and Hall/CRC, Boca Raton, Florida (2004)CrossRefGoogle Scholar
  21. 21.
    Kim, K.-H., Lim, S.: Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations. J. Korean Math. Soc. 53(4), 929–967 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kim, Y.-C., Lee, K.-A.: Regularity results for fully nonlinear parabolic integro-differential operators. Math. Ann. 357(4), 1541–1576 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Meerschaert, M.M., Alla, S.: Stochastic Models for Fractional Calculus. In: De Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter GmbH & Co., Berlin (2012)Google Scholar
  24. 24.
    Meerschaert, M.M., Benson, D.A., Scheffler, H.-P., Becker-Kern, P.: Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66, 060102 (2002)CrossRefGoogle Scholar
  25. 25.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Prüss, J.: Evolutionary integral equations and applications, reprint of the 1993 edition. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2012)Google Scholar
  27. 27.
    Zacher, R.: Maximal regularity of type \(L_p\) for abstract parabolic Volterra equations. J. Evolut. Equ. 5(1), 79–103 (2005)CrossRefGoogle Scholar
  28. 28.
    Zacher, R.: The Harnack inequality for the Riemann–Liouville fractional derivation operator. Math. Inequal. Appl. 14(1), 35–43 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Zacher, R.: A weak Harnack inequality for fractional evolution equations with discontinuous coefficients. Ann. Sci. Norm. Super Pisa Cl. Sci. 12(4), 903–940 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dominik Dier
    • 1
  • Jukka Kemppainen
    • 2
  • Juhana Siljander
    • 3
  • Rico Zacher
    • 1
    Email author
  1. 1.Institute of Applied AnalysisUniversity of UlmUlmGermany
  2. 2.Applied and Computational MathematicsUniversity of OuluOuluFinland
  3. 3.Department of Mathematics and StatisticsUniversity of JyväskyläJyvaskylaFinland

Personalised recommendations