Advertisement

A Kollár-type vanishing theorem

  • Jingcao WuEmail author
Article
  • 24 Downloads

Abstract

Let \(f:X\rightarrow Y\) be a smooth fibration between two complex manifolds X and Y, and let L be a pseudo-effective line bundle on X. We obtain a sufficient condition for \(R^{q}f_{*}(K_{X/Y}\otimes L)\) to be reflexive and hence derive a Kollár-type vanishing theorem.

Mathematics Subject Classification

Primary 32J25 Secondary 32L05 

Notes

Acknowledgements

The author sincerely thanks his supervisor Professor Jixiang Fu for discussions. Thanks also go to Shin-ichi Matsumura, who kindly provided some comments about the references of this paper. Finally, he is very grateful to the referee for many useful suggestions on how to improve the paper.

References

  1. 1.
    Ambro, F.: An injectivity theorem. Compos. Math. 150, 999–1023 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berndtsson, B.: The openness conjecture and complex Brunn-Minkowski inequalities. In: Complex Geometry and Dynamics. Abel Symposia, vol. 10, pp. 29–44. Springer, Cham (2015)CrossRefGoogle Scholar
  3. 3.
    Demailly, J.-P.: Estimations \(L^{2}\) pour l’opérateur \(\bar{\partial }\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. 4(15), 457–511 (1982)CrossRefGoogle Scholar
  4. 4.
    Demailly, J.-P.: Analytic methods in algebraic geometry. In: Surveys of Modern Mathematics, vol. 1. International Press, Somerville, MA; Higher Education Press, Beijing (2012). ISBN: 978-1-57146-234-3Google Scholar
  5. 5.
    Demailly, J.-P., Peternell, T., Schneider, M.: Pseudo-effective line bundles on compact Kähler manifolds. Internat J. Math. 6, 689–741 (2001)CrossRefGoogle Scholar
  6. 6.
    Esnault, H., Viehweg, E.: Lectures on vanishing theorems. DMV Seminar, 20. Birkhäuser, Basel (1992). ISBN: 3-7643-2822-3Google Scholar
  7. 7.
    de Fernex, T., Ein, L., Mustaţă, M.: Vanishing theorems and singularities in birational geometry. http://homepages.math.uic.edu/~ein/DFEM.pdf
  8. 8.
    Fujino, O.: A transcendental approach to Kollár’s injectivity theorem. Osaka J. Math. 49, 833–852 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gongyo, Y., Matsumura, S.: Versions of injectivity and extension theorems. Ann. Sci. Éc. Norm. Supér. 4(50), 479–502 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hartshorne, R.: Stable reflexive sheaves. Math. Ann. 254, 121–176 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kollár, J.: Higher direct images of dualizing sheaves. I. Ann. Math. 2(123), 11–42 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Matsumura, S.: A vanishing theorem of Kollár–Ohsawa type. Math. Ann. 366, 1451–1465 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Matsumura, S.: An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities. J. Algebra. Geom. 27, 305–337 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mourougane, C., Takayama, S.: Hodge metrics and the curvature of higher direct images. Ann. Sci. Éc. Norm. Sup. 4(41), 905–924 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mumford, D.: Lectures on Curves on an Algebraic Surface. With a section by G. M. Bergman. Annals of Mathematics Studies, vol. 59. Princeton University Press, Princeton, NJ (1966)Google Scholar
  16. 16.
    Ohsawa, T.: Vanishing theorems on complete Kähler manifolds. Publ. Res. Inst. Math. Sci. 20, 21–38 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ohsawa, T.: Analysis of several complex variables. Translated from the Japanese by Shu Gilbert Nakamura. Translations of Mathematical Monographs, 211. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI (2002). ISBN: 0-8218-2098-2Google Scholar
  18. 18.
    Siu, Y.-T.: A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J. Differ. Geom. 19, 431–452 (1984)CrossRefGoogle Scholar
  19. 19.
    Takegoshi, K.: Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms. Math. Ann. 303, 389–416 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations