Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties
Article
First Online:
- 67 Downloads
Abstract
The purpose of this paper is to bring together various loose ends in the theory of integrable systems. For a semisimple Lie algebra \({\mathfrak {g}}\), we obtain several results on the completeness of homogeneous Poisson-commutative subalgebras of \({\mathscr {S}}({\mathfrak {g}})\) on coadjoint orbits. This concerns, in particular, Gelfand–Tsetlin and Mishchenko–Fomenko subalgebras. Our results reveal the crucial role of nilpotent orbits and sheets in \({\mathfrak {g}}\simeq {\mathfrak {g}}^{*}\).
Keywords
Integrable systems Moment map Coisotropic actions Coadjoint orbitsMathematics Subject Classification
17B63 14L30 17B08 17B20 22E46Notes
Acknowledgements
We are grateful to the anonymous referee for the detailed report and important suggestions.
References
- 1.Akhiezer, D., Panyushev, D.: Multiplicities in the branching rules and the complexity of homogeneous spaces. Mosc. Math. J. 2(1), 17–33 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Avdeev, R.S., Petukhov, A.V.: Spherical actions on flag varieties. Mat. Sb. 205(9), 3–48 (2014). English translation in Sb. Math., 205(9-10), 1223–1263 (2014)Google Scholar
- 3.Bolsinov, A.: Commutative families of functions related to consistent Poisson brackets. Acta Appl. Math. 24(3), 253–274 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Bolsinov, A., Zhang, P.: Jordan–Kronecker invariants of finite-dimensional Lie algebras. Transform. Groups 21(1), 51–86 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54(1), 61–104 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)MathSciNetzbMATHGoogle Scholar
- 7.Colarusso, M., Evens, S.: The complex orthogonal Gelfand–Zeitlin system, arXiv:1808.04424v1 [math.RT]
- 8.Crooks, P., Rosemann, S., Roeser, M.: Slodowy slices and the complete integrability of Mishchenko–Fomenko subalgebras on regular adjoint orbits. arXiv:1803.04942v1 [math.SG]
- 9.Dufour, J.-P., Zung, N.T.: Poisson structures and their normal forms. In: Progress in Mathematics, vol. 242. Birkhäuser, Basel (2005)Google Scholar
- 10.Feigin, B., Frenkel, E., Rybnikov, L.: Opers with irregular singularity and spectra of the shift of argument subalgebra. Duke Math. J. 155(2), 337–363 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. (Russian). Dokl. Akad. Nauk SSSR (N.S.) 71, 825–828 (1950). English transl. In: Gelfand, I.M. Collected Papers, vol. II, Springer-Verlag, Berlin, pp. 653–656 (1988)Google Scholar
- 12.Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of groups of orthogonal matrices. (Russian). Dokl. Akad. Nauk SSSR (N.S.) 71, 1017–1020 (1950). English transl. In: Gelfand, I.M. Collected Papers, vol. II, Springer-Verlag, Berlin, pp. 657–661 (1988)Google Scholar
- 13.de Graaf, W.: Computing with nilpotent orbits in simple Lie algebras of exceptional type. LMS J. Comput. Math. 11, 280–297 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Guillemin, V., Sternberg, S.: The moment map and collective motion. Ann. Physics 127(1), 220–253 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Guillemin, V., Sternberg, S.: The Gelfand–Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52(1), 106–128 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm. Ergod. Theory Dyn. Syst. 3(2), 219–230 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Guillemin, V., Sternberg, S.: Multiplicity-free spaces. J. Differ. Geom. 19(1), 31–56 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Harada, M.: The symplectic geometry of the Gelfand–Cetlin–Molev basis for representations of \({\rm Sp}(2n,{\mathbb{C}})\). J. Symplectic Geom. 4(1), 1–41 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67(2), 333–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Huckleberry, A.T., Wurzbacher, T.: Multiplicity-free complex manifolds. Math. Ann. 286(1–3), 261–280 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Johnson, K.D.: A note on branching theorems. Proc. Am. Math. Soc. 129(2), 351–353 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Knop, F.: Der Zentralisator einer Liealgebra in einer einhüllenden Algebra. J. Reine Angew. Math. 406, 5–9 (1990)MathSciNetzbMATHGoogle Scholar
- 23.Knop, F.: Weylgruppe und Momentabbildung. Invent. Math. 99, 1–23 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Kostant, B.: Fomenko–Mischenko theory, Hessenberg varieties, and polarizations. Lett. Math. Phys. 90(1–3), 253–285 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics. I., In: Studies in Lie theory, 319–364, Progr. Math., vol. 243. Birkhäuser Boston (2006)Google Scholar
- 27.Krämer, M.: Multiplicity free subgroups of compact connected Lie groups. Arch. Math. 27, 28–36 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Kraft, H.: Parametrisierung von Konjugationsklassen in \({\mathfrak{sl}}_n\). Math. Ann. 234(3), 209–220 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Losev, I.V.: Algebraic Hamiltonian actions. Math. Z. 263(3), 685–723 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Luna, D.: Sur les orbites fermées des groupes algébriques réductifs. Invent. Math. 16, 1–5 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Mishchenko, A.S., Fomenko, A.T.: Euler equation on finite-dimensional Lie groups. Math. USSR Izv. 12, 371–389 (1978)zbMATHCrossRefGoogle Scholar
- 32.Molev, A., Yakimova, O.: Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras. arXiv:1711.03917v1 [math.RT]
- 33.Panyushev, D.: Complexity and nilpotent orbits. Manuscr. Math. 83, 223–237 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Panyushev, D.: The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser. Math. Proc. Camb. Phil. Soc. 134(1), 41–59 (2003)CrossRefGoogle Scholar
- 35.Panyushev, D., Premet, A., Yakimova, O.: On symmetric invariants of centralisers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Panyushev, D., Yakimova, O.: The argument shift method and maximal commutative subalgebras of Poisson algebras. Math. Res. Lett. 15(2), 239–249 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Panyushev, D., Yakimova, O.: Poisson-commutative subalgebras of \(\mathscr {S}({\mathfrak{g}})\) associated with involutions. arXiv:1809.00350v1 [math.RT]
- 38.Tarasov, A.A.: The maximality of certain commutative subalgebras in the Poisson algebra of a semisimple Lie algebra. Russ. Math. Surv. 57(5), 1013–1014 (2002)zbMATHCrossRefGoogle Scholar
- 39.Thompson, R.C.: Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl. 147, 323–371 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Vinberg, E.B.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR-Izv 36, 1–22 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Uspekhi Mat. Nauk 56(1(337)), 3–62 (2001). English translation in Russian Math. Surveys, 56(1), 1–60 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Vinberg, E.B., Kimelfeld, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funktsional. Anal. i Pril. 12(3), 12–19 (1978). English translation in Functional Anal. Appl., 12(3), 168–174 (1978)MathSciNetGoogle Scholar
- 43.Винберг, Э.Б., Попов, В.Л. “Теория Инвариантов”, В: Соврем. пробл. математики. Фундаментальные направл., т. 55, стр. 137–309. Москва: ВИНИТИ 1989 (Russian). English translation: Popov, V.L., Vinberg, E.B.: “Invariant theory”, In: Algebraic Geometry IV, Encyclopaedia Math. Sci., vol. 55, pp.123–284. Springer, New York (1994)Google Scholar
- 44.Vinberg, E.B., Yakimova, O.S.: Complete families of commuting functions for coisotropic Hamiltonian actions. Adv. Math. 348, 523–540 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Yakimova, O.: The centralisers of nilpotent elements in classical Lie algebras. Funct. Anal. Appl. 40(1), 42–51 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Yakimova, O.: Surprising properties of centralisers in classical Lie algebras. Ann. Inst. Fourier (Grenoble) 59(3), 903–935 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Yakimova, O.: One-parameter contractions of Lie–Poisson brackets. J. Eur. Math. Soc. 16, 387–407 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Zorin, A.A.: On the commutativity of the centralizer of a subalgebra in a universal enveloping algebra. Funktsional. Anal. i Pril. 43(2), 47–63 (2009). English translation in Funct. Anal. Appl., 43(2), 119–131 (2009)Google Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019