Advertisement

Spectral multipliers via resolvent type estimates on non-homogeneous metric measure spaces

  • Peng Chen
  • Adam SikoraEmail author
  • Lixin Yan
Article
  • 13 Downloads

Abstract

We describe a simple but surprisingly effective technique of obtaining spectral multiplier results for abstract operators which satisfy the finite propagation speed property for the corresponding wave equation propagator. We show that, in this setting, spectral multipliers follow from resolvent or semigroup type estimates. The most notable point of the paper is that our approach is very flexible and can be applied even if the corresponding ambient space does not satisfy the doubling condition or if the semigroup generated by an operator is not uniformly bounded. As a corollary we obtain \(L^p\) spectrum independence for several second order differential operators and recover some known results. Our examples include the Laplace–Belltrami operator on manifolds with ends and Schrödinger operators with strongly subcritical potentials.

Keywords

Spectral multipliers Non-homogeneous type spaces Finite propagation speed property \(L^p\) spectrum independence Manifolds with ends Schrödinger operators 

Mathematics Subject Classification

42B15 42B20 47F05 

Notes

Acknowledgements

The authors would like to thank X.T. Duong and J. Li for helpful discussions. P. Chen was partially supported by NNSF of China 11501583, Guangdong Natural Science Foundation 2016A030313351 and the Fundamental Research Funds for the Central Universities 161gpy45. A. Sikora was supported by Australian Research Council Discovery Grant DP 130101302. L.X. Yan was supported by the NNSF of China, Grant Nos. 11871480 and 11521101.

References

  1. 1.
    Arendt, W.: Gaussian estimates and interpolation of the spectrum in \(L^p\). Differ. Integral Equ. 7(5–6), 1153–1168 (1994)zbMATHGoogle Scholar
  2. 2.
    Boutayeb, S., Coulhon, T., Sikora, A.: A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces. Adv. Math. 270, 302–374 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.X.: Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means. J. Anal. Math. 129, 219–283 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coulhon, T., Devyver, B., Sikora, A.: Gaussian heat kernel estimate: from functions to forms. J. Reine Angew. Math. arXiv:1606.02423 (published online)
  6. 6.
    Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem. Proc. Lond. Math. Soc. 96(2), 507–544 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coulhon, T., Zhang, Q.S.: Large time behavior of heat kernels on forms. J. Differ. Geom. 77(3), 353–384 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cowling, M., Sikora, A.: A spectral multiplier theorem for a sublaplacian on SU(2). Math. Z. 238(1), 1–36 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davies, E.B.: The functional calculus. J. Lond. Math. Soc. 52, 166–176 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Davies, E.B.: \(L^p\) spectral independence and \(L^1\) analyticity. J. Lond. Math. Soc. 52, 177–184 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Davies, E.B., Simon, B.: \(L^p\) norms of non-critical Schrödinger semigourps. J. Funct. Anal. 102, 95–115 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Davies, E.B., Simon, B., Taylor, M.: \(L^p\) spectral theory of Kleinian groups. J. Funct. Anal. 78, 116–136 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196, 443–485 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grigor’yan, A., Saloff-Coste, L.: Heat kernel on manifolds with ends. Ann. Inst. Fourier (Grenoble) 59(5), 1917–1997 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hörmander, L.: Estimates for translation invariant operators in \(L^{p}\) spaces. Acta Math. 104, 93–140 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, 2nd edn. Classics in Mathematics. Springer, Berlin (2003)Google Scholar
  17. 17.
    Mikhlin, S.G.: Multidimensional Singular Integrals and Integral Equations. Translated from the Russian by W. J. A. Whyte. Pergamon Press, Oxford (1965)Google Scholar
  18. 18.
    Murata, M.: Positive solutions and large time behaviors of Schrödinger semigroups. J. Funct. Anal. 56, 300–310 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Murata, M.: Structure of positive solutions to \((-\Delta +V)u=0\) in \(\mathbb{R}^n\). Duke Math. J. 53, 869–943 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ouhabaz, E.-M.: Analysis of heat equation on domains. London Mathematical Society Monographs. Princeton University Press, Princeton (2005)Google Scholar
  21. 21.
    Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Stein, E.M.: Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsSun Yat-sen (Zhongshan) UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of MathematicsMacquarie UniversityNSWAustralia

Personalised recommendations