The Capelli eigenvalue problem for Lie superalgebras

  • Siddhartha Sahi
  • Hadi SalmasianEmail author
  • Vera Serganova


For a finite dimensional unital complex simple Jordan superalgebra J, the Tits–Kantor–Koecher construction yields a 3-graded Lie superalgebra \(\mathfrak {g}^\flat \cong \mathfrak {g}^\flat (-1)\oplus \mathfrak {g}^\flat (0)\oplus \mathfrak {g}^\flat (1)\), such that \(\mathfrak {g}^\flat (-1)\cong J\). Set \(V:=\mathfrak {g}^\flat (-1)^*\) and \(\mathfrak {g}:=\mathfrak {g}^\flat (0)\). In most cases, the space \(\mathscr {P}(V)\) of superpolynomials on V is a completely reducible and multiplicity-free representation of \(\mathfrak {g}\), and there exists a direct sum decomposition \(\mathscr {P}(V):=\bigoplus _{\lambda \in \Omega }V_\lambda \), where \(\left( V_\lambda \right) _{\lambda \in \Omega }\) is a family of irreducible \(\mathfrak {g}\)-modules parametrized by a set of partitions \(\Omega \). In these cases, one can define a natural basis \(\left( D_\lambda \right) _{\lambda \in \Omega }\) of “Capelli operators” for the algebra \(\mathscr {PD}(V)^{\mathfrak {g}}\) of \(\mathfrak {g}\)-invariant superpolynomial differential operators on V. In this paper we complete the solution to the Capelli eigenvalue problem, which asks for the determination of the scalar \(c_\mu (\lambda )\) by which \(D_\mu \) acts on \(V_\lambda \). We associate a restricted root system \(\varSigma \) to the symmetric pair \((\mathfrak {g},\mathfrak {k})\) that corresponds to J, which is either a deformed root system of type \(\mathsf {A}(m,n)\) or a root system of type \(\mathsf {Q}(n)\). We prove a necessary and sufficient condition on the structure of \(\varSigma \) for \(\mathscr {P}(V)\) to be completely reducible and multiplicity-free. When \(\varSigma \) satisfies the latter condition we obtain an explicit formula for the eigenvalue \(c_\mu (\lambda )\), in terms of Sergeev–Veselov’s shifted super Jack polynomials when \(\varSigma \) is of type \(\mathsf {A}(m,n)\), and Okounkov-Ivanov’s factorial Schur Q-polynomials when \(\varSigma \) is of type \(\mathsf {Q}(n)\). Along the way, we prove that the natural map from the centre of the enveloping algebra of \(\mathfrak {g}\) into \(\mathscr {PD}(V)^{\mathfrak {g}}\) is surjective in all cases except when \(J\cong F \), where \( F \) is the 10-dimensional exceptional Jordan superalgebra.



The research of Siddhartha Sahi was partially supported by a Simons Foundation grant (509766), of Hadi Salmasian by NSERC Discovery Grants (RGPIN-2013-355464 and RGPIN-2018-04044), and of Vera Serganova by an NSF Grant (1701532). This work was initiated during the Workshop on Hecke Algebras and Lie Theory, which was held at the University of Ottawa. The first and the second named authors thank the National Science Foundation (DMS-162350), the Fields Institute, and the University of Ottawa for funding this workshop.


  1. 1.
    Alldridge, A., Sahi, S., Salmasian, H.: Schur Q-functions and the Capelli eigenvalue problem for the Lie superalgebra \({\mathfrak{q}}(n)\). In: Christensen, J.G., Dann, S., Dawson, M. (eds.) Proceedings of the Conference on Representation Theory and Harmonic Analysis on Symmetric Spaces, Contemporary Mathematics, vol. 714, pp. 1–22. American Mathematical Society, Providence, RI (2018)Google Scholar
  2. 2.
    Brini, A., Huang, R.Q., Teolis, A.G.B.: The umbral symbolic method for supersymmetric tensors. Adv. Math. 96(2), 123–193 (1992)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cantarini, N., Kac, V.G.: Classification of linearly compact simple Jordan and generalized Poisson superalgebras. J. Algebra 313(1), 100–124 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, S.-J., Wang, W.: Remarks on the Schur–Howe–Sergeev duality. Lett. Math. Phys. 52(2), 143–153 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cheng, S.-J., Wang, W.: Howe duality for Lie superalgebras. Compos. Math. 128(1), 55–94 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, S.J., Wang, W.: Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics, vol. 144. American Mathematical Society, Providence (2012)zbMATHGoogle Scholar
  7. 7.
    Coulembier, K.: The orthosymplectic superalgebra in harmonic analysis. J. Lie Theory 23(1), 55–83 (2013)zbMATHGoogle Scholar
  8. 8.
    Debiard, A.: Polynômes de Tchébychev et de Jacobi dans un espace euclidien de dimension \(p\). C. R. Acad. Sci. Paris Sér. I Math. 296(13), 529–532 (1983)zbMATHGoogle Scholar
  9. 9.
    Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants, vol. 255 of Graduate Texts in Mathematics. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  10. 10.
    Helgason, S.: Some results on invariant differential operators on symmetric spaces. Am. J. Math. 114(4), 789–811 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures (1992) (Tel Aviv), vol. 8 of Israel Math. Conf. Proc., pp. 1–182. Bar-Ilan Univ., Ramat Gan (1995)Google Scholar
  12. 12.
    Howe, R., Umeda, T.: The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann. 290(3), 565–619 (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category \(\mathscr {O}\). Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence, RI (2008)Google Scholar
  14. 14.
    Ivanov, V.N.: A combinatorial formula for factorial Schur \(Q\)-functions. In: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 256(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 3), no. 265, pp. 73–94 (1999)Google Scholar
  15. 15.
    Joseph, A.: A preparation theorem for the prime spectrum of a semisimple Lie algebra. J. Algebra 48(2), 241–289 (1977)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kac, V.G.: Classification of simple \(Z\)-graded Lie superalgebras and simple Jordan superalgebras. Commun. Algebra 5(13), 1375–1400 (1977)CrossRefzbMATHGoogle Scholar
  17. 17.
    Knop, F., Sahi, Siddhartha: Difference equations and symmetric polynomials defined by their zeros. Int. Math. Res. Not. 10, 473–486 (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kostant, B., Sahi, S.: The Capelli identity, tube domains, and the generalized Laplace transform. Adv. Math. 87(1), 71–92 (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Classic Texts in the Physical Sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015). (With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition (2015))Google Scholar
  20. 20.
    Meinrenken, E.: Clifford algebras and Lie theory, volume 58 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Nazarov, M.: Capelli identities for Lie superalgebras. Ann. Sci. École Norm. Sup. (4) 30(6), 847–872 (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pragacz, P.: Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials. In: Malliavin, M.-P. (ed.) Topics in invariant theory (Paris, 1989/1990), vol. 1478 of Lecture Notes in Math., pp. 130–191. Springer, Berlin (1991)Google Scholar
  23. 23.
    Sahi, S.: The spectrum of certain invariant differential operators associated to a Hermitian symmetric space. In: Brylinski, J.-L., Brylinski, R., Guillemin, V., Kac, V. (eds.) Lie theory and geometry, vol. 123 of Progr. Math., pp. 569–576. Birkhäuser Boston, Boston (1994)Google Scholar
  24. 24.
    Sahi, S., Salmasian, H.: The Capelli problem for \(\mathfrak{gl}(m|n)\) and the spectrum of invariant differential operators. Adv. Math. 303, 1–38 (2016)CrossRefzbMATHGoogle Scholar
  25. 25.
    Scheunert, M.: The Theory of Lie Superalgebras. Lecture Notes in Mathematics An introduction, vol. 716. Springer, Berlin (1979)zbMATHGoogle Scholar
  26. 26.
    Schmid, W.: Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen. Invent. Math. 9, 61–80 (1969/1970)Google Scholar
  27. 27.
    Sekiguchi, J.: Zonal spherical functions on some symmetric spaces. Publ. Res. Inst. Math. Sci. 12, 455–459 (1976/77) (supplement)Google Scholar
  28. 28.
    Sergeev, A.N., Veselov, A.P.: Deformed quantum Calogero–Moser problems and Lie superalgebras. Commun. Math. Phys. 245(2), 249–278 (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sergeev, A.N., Veselov, A.P.: Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Adv. Math. 192(2), 341–375 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Weingart, M.: Spectral functions of invariant operators on skew multiplicity free spaces. ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)—Rutgers The State University of New Jersey—New BrunswickGoogle Scholar
  31. 31.
    Zou, Y.M.: Categories of finite-dimensional weight modules over type I classical Lie superalgebras. J. Algebra 180(2), 459–482 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Siddhartha Sahi
    • 1
  • Hadi Salmasian
    • 2
    Email author
  • Vera Serganova
    • 3
  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA
  2. 2.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  3. 3.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations