Volume bounds of the Ricci flow on closed manifolds

  • Chih-Wei ChenEmail author
  • Zhenlei Zhang


Let \(\{g(t)\}_{t\in [0,T)}\) be the solution of the Ricci flow on a closed Riemannian manifold \(M^n\) with \(n\ge 3\). Without any assumption, we derive lower volume bounds of the form \(\mathrm{Vol}_{g(t)}\ge C (T-t)^{\frac{n}{2}}\), where C depends only on n, T and g(0). In particular, we show that
$$\begin{aligned} \mathrm{Vol}_{g(t)} \ge e^{ T\lambda -\frac{n}{2}} \left( \frac{4}{(A(\lambda -r)+4B)T}\right) ^{\frac{n}{2}}\left( T-t\right) ^{\frac{n}{2}}, \end{aligned}$$
where \(r:=\inf _{\Vert \phi \Vert _2^2=1} \int _M R\phi ^2 \ d\mathrm{vol}_{g(0)}\), \(\lambda :=\inf _{\Vert \phi \Vert _2^2=1} \int _M 4|\nabla \phi |^2+R\phi ^2\ d\mathrm{vol}_{g(0)}\) and AB are Sobolev constants of (Mg(0)). This estimate is sharp in the sense that it is achieved by the unit sphere with scalar curvature \(R_{g(0)}=n(n-1)\) and \(A=\frac{4}{n(n-2)}\omega _n^{-\frac{2}{n}}\), \(B=\frac{n-1}{n-2}\omega _n^{-\frac{2}{n}}\). On the other hand, if the diameter satisfies \(\mathrm{diam}_{g(t)}\le c_1\sqrt{T-t}\) and there exists a point \(x_0\in M\) such that \(R(x_0,t)\le c_2(T-t)^{-1}\), then we have \(\mathrm{Vol}_{g(t)}\le C (T-t)^{\frac{n}{2}}\) for all \(t>\frac{T}{2}\), where C depends only on \(c_1,c_2,n,T\) and g(0).


Ricci flow Volume estimate \(\mu \)-entropy 

Mathematics Subject Classification

Primary 53C44 Secondary 35A23 



The first author appreciates Mao-Pei Tsui for suggesting him to compare the volume of sphere and other manifolds. He is always indebted to Shu-Cheng Chang and Huai-Dong Cao for their constant supports and discussions. He is supported by grant from MOST.


  1. 1.
    Aubin, T.: Équations différentielles non linéaireset problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part III: Geometric-analytic aspects, vol. 163. Mathematical Surveys and Monographs, American Mathematical Society. Providence, RI (2010)Google Scholar
  3. 3.
    Druet, O., Hebey, E.: The \(AB\) program in geometric analysis: sharp Sobolev inequalities and related problems. Mem. Am. Math. Soc. 761, 160 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hsu, S.-Y.: Uniqueness of solutions of Ricci flow on complete noncompact manifolds. arXiv:0704.3468v4 (2007)
  5. 5.
    Hebey, E., Vaugon, M.: Meilleures constantes dans le théorèm dinclusion de Sobolev. Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 13, 57–93 (1996)zbMATHGoogle Scholar
  6. 6.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159v1 (2002)
  7. 7.
    Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. arXiv:0707.2424v4 (2007) [Some results can be found in the published article: Sobolev inequalities, Riesz transforms, and the Ricci flow, Commun. Math. Stat. 2(2):187–209 (2014)]
  8. 8.
    Zhang, Q.S.: Some gradient estimates for the heat equation on domains and for an equation by Perelman. Int. Math. Res. Note, pp 1–39, Art. ID 92314 (2006)Google Scholar
  9. 9.
    Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Note, pp 1–17, Art. ID rnm056 (2007)Google Scholar
  10. 10.
    Zhang, Q.S.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19(1), 245–253 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Zhang, Z.: Compact blow-up limits of finite time singularities of Ricci flow are shrinking Ricci solitons. C. R. Math. Acad. Sci. Paris 345(9), 503–506 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational Sun Yat-sen UniversityKaohsiungTaiwan
  2. 2.Department of MathematicsCapital Normal UniversityBeijingChina

Personalised recommendations