Advertisement

Contracting orbits in Outer space

  • Spencer DowdallEmail author
  • Samuel J. Taylor
Article
  • 13 Downloads

Abstract

We show that strongly contracting geodesics in Outer space project to parameterized quasigeodesics in the free factor complex. This result provides a converse to a theorem of Bestvina–Feighn, and is used to give conditions for when a subgroup of \({{\,\mathrm{Out}\,}}(\mathbb {F})\) has a quasi-isometric orbit map into the free factor complex. It also allows one to construct many new examples of strongly contracting geodesics in Outer space.

Notes

Acknowledgements

The authors thank the referee for several helpful comments. The first named author was partially supported by NSF Grants DMS 1204814 and 1711089. The second named author was partially supported by NSF Grants DMS 1400498 and 1744551. We also acknowledge support from NSF Grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network) and from the GATSBY seminar at Brown and Yale.

References

  1. 1.
    Algom-Kfir, Y.: Strongly contracting geodesics in outer space. Geom. Topol. 15, 2181–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Algom-Kfir, Y., Bestvina, M.: Asymmetry of outer space. Geom. Dedicata 156(1), 81–92 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bestvina, M., Feighn, M.: A hyperbolic \({\rm Out}(F_n)\)-complex. Groups Geom. Dyn. 4(1), 31–58 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bestvina, M., Feighn, M.: Hyperbolicity of the complex of free factors. Adv. Math. 256, 104–155 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bestvina, M., Reynolds, P.: The boundary of the complex of free factors. Duke Math. J. 164(11), 2213–2251 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Culler, M., Vogtmann, K.: Moduli of graphs and automorphisms of free groups. Invent. Math. 84(1), 91–119 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dowdall, S., Kapovich, I., Taylor, S.J.: Cannon–Thurston maps for hyperbolic free group extensions. Isr. J. Math. 216(2), 753–797 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dowdall, S., Taylor, S.J.: Hyperbolic extensions of free groups. Geom. Topol. 22(1), 517–570 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Francaviglia, S., Martino, A.: Metric properties of outer space. Publ. Mat. 55(2), 433–473 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hamenstädt, U.: The boundary of the free factor graph and the free splitting graph (preprint). arXiv:1211.1630 (2013)
  11. 11.
    Hamenstädt, U.: Lines of minima in outer space. Duke Math. J. 163, 733–776 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hamenstadt, U., Hensel, S.: Stability in outer space. Groups Geom. Dyn. 12(1), 359–399 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Handel, M., Mosher, L.: The expansion factors of an outer automorphism and its inverse. Trans. Am. Math. Soc. 359(7), 3185–3208 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hatcher, A., Vogtmann, K.: The complex of free factors of a free group. Q. J. Math. 49(196), 459–468 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Horbez, C.: The Poisson boundary of \({\rm Out}({F}_n\)). Duke Math. J. 165(2), 341–369 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1), 103–149 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Minsky, Y.N.: Quasi-projections in Teichmüller space. J. Reine Angew. Math. 473, 121–136 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Paulin, F.: The Gromov topology on R-trees. Topol. Appl. 32(3), 197–221 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA
  2. 2.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations