Higher syzygies of surfaces with numerically trivial canonical bundle

  • Daniele Agostini
  • Alex KüronyaEmail author
  • Victor Lozovanu


The aim of this paper is to understand higher syzygies of polarized surfaces with trivial canonical bundles. More concretely, for a complex polarized surface (XL) with \(K_X=0\)



We are grateful to Giuseppe Pareschi, Angelo Lopez, Klaus Hulek, Gavril Farkas, and Andreas Leopold Knutsen for helpful conversations. We would also like to thank the anonymous referee for providing helpful comments and suggestions. The first author was supported by the Grant IRTG 1800 of the DFG.


  1. 1.
    Aprodu, M., Farkas, G.: The Green conjecture for smooth curves lying on arbitrary K3 surfaces. Compos. Math. 147, 211–226 (2011)CrossRefGoogle Scholar
  2. 2.
    Aprodu, M., Nagel, J.: Koszul cohomology and algebraic geometry. In: University Lecture Series, vol. 52. AMS (2010)Google Scholar
  3. 3.
    Barth, W. Abelian surfaces with \((1,2)\)-polarization. In: Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10, pp. 41–84. North-Holland, Amsterdam (1987)Google Scholar
  4. 4.
    Beauville, A.: Complex Algebraic Surfaces, LMS Student Texts, vol. 34, p. 144. Cambridge University Press, Cambridge (1983)Google Scholar
  5. 5.
    Buium, A.: Sur le nombre de Picard des revêtements doubles des surfaces algébriques. C. R. Acad. Sci. Paris Sér. I Math. 296, 361–364 (1983)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Camere, C.: About the stability of the tangent bundle of \({\mathbb{P}}^n\) restricted to a surface. Math. Z. 271(1–2), 499–507 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ein, L., Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. Math. 111(1), 51–67 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ein, L., Lazarsfeld, R.: Syzygies of projective varieties of large degree: recent progress and open problems. In: Algebraic Geometry: Salt Lake City 2015. Proceedings of Symposia in Pure Mathematics, vol. 97, pp 223–242. American Mathematical Society, Providence, RI (2018)Google Scholar
  9. 9.
    Eisenbud, D.: The Geometry of Syzygies, Graduate Texts in Mathematics, vol. 229. Springer, New York (2005)Google Scholar
  10. 10.
    Gallego, F.J., Purnaprajna, B.P.: Vanishing theorems and syzygies for K3 surfaces and Fano varieties. J. Pure Appl. Algebra 146(3), 251–265 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19(1), 125–171 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Green, M.: Koszul cohomology and the geometry of projective varieties II. J. Differ. Geom. 20(1), 279–289 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Green, M., Lazarsfeld, R.: On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83(1), 73–90 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Green, M., Lazarsfeld, R.: Special divisors on curves on a K3 surface. Invent. Math. 89(2,), 357–370 (1987)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. Compos. Math. 67(3), 301–314 (1988)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo, and the equations defining space curves. Invent. Math. 72, 491–506 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ito, A.: A remark on higher syzygies on abelian surfaces. Commun. Algebra. (2018).
  18. 18.
    Knutsen, A.L.: On \(k\)th-order embeddings of K3 surfaces and Enriques surfaces. Manuscr. Math. 104(2), 211–237 (2001)CrossRefGoogle Scholar
  19. 19.
    Knutsen, A.L., Lopez, A.F.: Brill-Noether theory of curves on Enriques surfaces II: the Clifford index. Manuscr. Math. 147(1–2), 193–237 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Knutsen, A.L., Syzdek, W., Szemberg, T.: Moving curves and Seshadri constants. Math. Res. Lett. 16(4), 711–719 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Küronya, A., Lozovanu, V.: A Reider-type theorem for higher syzygies on abelian surfaces (2015). arXiv:1509.08621
  22. 22.
    Saint-Donat, B.: Projective models of \(K-3\) surfaces. Am. J. Math. 96, 602–639 (1974)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Serrano, F.: Extension of morphisms defined on a divisor. Math. Ann. 277, 395–413 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface. J. Eur. Math. Soc. (JEMS) 4(4), 363–404 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Compos. Math. 141(5), 1163–1190 (2005). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daniele Agostini
    • 1
  • Alex Küronya
    • 2
    • 3
    Email author
  • Victor Lozovanu
    • 4
  1. 1.Institut für MathematikHumboldt Universität zu BerlinBerlinGermany
  2. 2.Institut für MathematikJohann-Wolfgang-Goethe Universität FrankfurtFrankfurt am MainGermany
  3. 3.Department of AlgebraBudapest University of Technology and EconomicsBudapestHungary
  4. 4.Institut für Algebraische GeometrieGottfried-Wilhelm-Leibniz-Universität HannoverHannoverGermany

Personalised recommendations