The twisted mean square and critical zeros of Dirichlet L-functions

  • Xiaosheng Wu


In this work, we obtain an asymptotic formula for the twisted mean square of a Dirichlet L-function with a longer mollifier, whose coefficients are also more general than before. As an application we obtain that, for every Dirichlet L-function, more than 41.72% of zeros are on the critical line and more than 40.74% of zeros are simple and on the critical line. These proportions also improve previous results which were proved only for the Riemann zeta-function.


Twisted second moment Kloosterman sum Simple zeros Riemann zeta-function Dirichlet L-function 

Mathematics Subject Classification

11M26 11M06 



We would like to express our heartfelt thanks to the anonymous referee for his careful reading and helpful suggestion.


  1. 1.
    Balasubramanian, R., Conrey, J.B., Heath-Brown, D.R.: Asymptotic mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. J. Reine Angew. Math. 357, 161–181 (1985)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bauer, P.: Zeros of Dirichlet \(L\)-series on the critical line. Acta Arith. 93, 37–52 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bettin, S., Gonek, S.: The \(\theta =\infty \) conjecture implies the Riemann hypothesis. Mathematika 63(1), 29–33 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bettin, S., Chandee, V.: Trilinear forms with kloosterman fractions. Adv. Math. 328, 1234–1262 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bettin, S., Chandee, V., Radziwiłł, M.: The mean square of the product of the Riemann zeta-function with Dirichlet polynomials. J. Reine Angew. Math. 720, 51–79 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bui, H., Conrey, J.B., Young, M.: More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150(1), 35–64 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bui, H.: Critical zeros of the Riemann zeta-function. arXiv:1410.2433
  8. 8.
    Conrey, J.B.: Zeros of derivatives of the Riemann’s \(\xi \)-function on the critical line. J. Number Theory 16, 49–74 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Conrey, J.B., Ghosh, A.: A simpler proof of Levinson’s theorem. Math. Proc. Camb. Philos. Soc. 97, 385–395 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Conrey, J.B., Ghosh, A., Gonek, S.M.: Large gaps between zeros of the zeta-function. Mathematika 33(2), 212–238 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Conrey, J.B.: More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 339, 1–26 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Conrey, J.B., Iwaniec, H., Soundararajan, K.: Critical zeros of Dirichlet \(L\)-function. J. Reine Angew. Math. 681, 175–198 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Conrey, J.B., Iwaniec, H., Soundararajan, K.: Asymptotic large sieve. arXiv:1105.1176
  14. 14.
    Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70, 219–288 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Deshouillers, J.-M., Iwaniec, H.: Power mean values of the Riemann zeta function II. Acta Arith. 48, 305–312 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Feng, S.: Zeros of the Riemann zeta function on the critical line. J. Number Theory 132(4), 511–542 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Heath-Brown, D.R.: Simple zeros of the Riemann zeta-function on the critical line. Bull. Lond. Math. Soc. 11, 17–18 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Heath-Brown, D.R.: Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34(6), 1365–1377 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kühn, P., Robles, N., Zeindler, D.: On mean values of mollifiers and \(L\)-functions associated to primitive cusp form. Math. Z. (2018).
  20. 20.
    Levinson, N.: More than one third of zeros of Riemann’s zeta-function are on \(\sigma =1/2\). Adv. Math. 13, 383–436 (1974)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, X., Radziwiłł, M.: The Riemann-zeta function on vertical arithmetic progressions. Int. Math. Res. Not. 2, 325–354 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pratt, K., Robles, N.: Perturbed moments and a longer mollifier for critical zeros of \(\zeta \). Res. Number Theory 4(1), 26 (2018). Art. 9MathSciNetCrossRefGoogle Scholar
  23. 23.
    Radziwiłł, M.: Limitations to mollifying \(\zeta (s)\). arXiv:1207.6583
  24. 24.
    Robles, N., Roy, A., Zaharescu, A.: Twisted second moments of the Riemann zeta-function and applications. J. Math. Anal. Appl. 434(1), 271–314 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pratt, K., Robles, N., Zaharescu, A., Zeindler, D.: Conbinatorial applications of autocorrelation ratios. arXiv:1802.10521
  26. 26.
    Selberg, A.: On the zeros of Riemann’s zeta-function. Skr. Norske Videnskaps-Akad. Oslo I(10), 1–59 (1942)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sono, K.: An application of generalized mollifiers to the Riemann zeta-function. Kyushu J. Math. 72, 35–69 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Soundararajan, K.: Mean-values of the Riemann zeta-function. Mathematika 42(1), 158–174 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wu, X.: Distinct zeros and simple zeros for the family of Dirichlet \(L\)-functions. Quart. J. Math. 67, 757–779 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Young, M.P.: A short proof of Levinson’s theorem. Arch. Math. 95, 539–548 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations