Advertisement

Affine Brauer category and parabolic category \({\mathcal {O}}\) in types BCD

  • Hebing Rui
  • Linliang Song
Article
  • 21 Downloads

Abstract

A strict monoidal category referred to as affine Brauer category \(\mathcal {AB}\) is introduced over a commutative ring \(\kappa \) containing multiplicative identity 1 and invertible element 2. We prove that morphism spaces in \(\mathcal {AB}\) are free over \(\kappa \). The cyclotomic (or level k) Brauer category \(\mathcal {CB}^f(\omega )\) is a quotient category of \(\mathcal {AB}\). We prove that any morphism space in \(\mathcal {CB}^f(\omega )\) is free over \(\kappa \) with maximal rank if and only if the \({\mathbf {u}}\)-admissible condition holds in the sense of (1.32). Affine Nazarov–Wenzl algebras (Nazarov in J Algebra 182(3):664–693, 1996) and cyclotomic Nazarov–Wenzl algebras (Ariki et al. in Nagoya Math J 182:47–134, 2006) will be realized as certain endomorphism algebras in \(\mathcal {AB}\) and \(\mathcal {CB}^f(\omega )\), respectively. We will establish higher Schur–Weyl duality between cyclotomic Nazarov–Wenzl algebras and parabolic BGG categories \({\mathcal {O}}\) associated to symplectic and orthogonal Lie algebras over the complex field \(\mathbb C\). This enables us to use standard arguments in (Anderson et al. in Pac J Math 292(1):21–59, 2018; Rui and Song in Math Zeit 280(3–4):669–689, 2015; Rui and Song in J Algebra 444:246–271, 2015), to compute decomposition matrices of cyclotomic Nazarov–Wenzl algebras. The level two case was considered by Ehrig and Stroppel in (Adv. Math. 331:58–142, 2018).

References

  1. 1.
    Anderson, H., Stroppel, C., Tubbenhauer, D.: Cellular structures using \(_q\)-tilting modules. Pac. J. Math. 292(1), 21–59 (2018)CrossRefGoogle Scholar
  2. 2.
    Ariki, S., Mathas, A., Rui, H.: Cyclotomic Nazarov–Wenzl algebras. Nagoya Math. J. 182, 47–134 (2006). Special issue in honor of Prof. G. Lusztig’s sixty birthdayMathSciNetCrossRefGoogle Scholar
  3. 3.
    Auslander, M., Reiten, I., Smalo, S.: Representation Theory of Artin Algebras, vol. 36. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  4. 4.
    Balagovic, M., Daugherty, Z., Entova-Aizenbud, I., Halacheva, I., Hennig, J., Im, M.S., Letzter, G., Norton, E., Serganova, V., Stroppel, C.: The affine VW supercategory. arXiv:1801.04178v1
  5. 5.
    Bourbaki, N.: Groupes: et algèbres de Lie. Masson, Paris (1990)zbMATHGoogle Scholar
  6. 6.
    Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38, 857–872 (1937)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brundan, J.: Representations of the oriented skein category. arXiv:1712.08953
  8. 8.
    Brundan, J., Comes, J., Nash, D., Reynolds, A.: A basis theorem for the degenerate affine oriented Brauer category and its cyclotomic quotients. Quantum Topol. 8(1), 75–112 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brundan, J., Ellis, A.P.: Monoidal supercategories. Commun. Math. Phys. 351, 1045–1089 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Comes, J., Kujawa, J.R.: A basis theorem for the degenerate affine oriented Brauer–Clifford supercategory. arXiv:1706.09999v1
  11. 11.
    Comes, J., Wilson, B.: Deligne’s category \({\underline{{\rm Rep}}}GL_\delta \) and representations of general linear supergroups. Represent. Theory Am. Math. Soc. 16, 568–609 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Daugherty, Z., Ram, A., Virk, R.: Affine and degenerate affine BMW algebras: actions on tensor space. Sel. Math. 19(2), 611–653 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Deligne, P., Milne, J.: Tannakian categories, Hodge cycles, motives, and Shimura varieties. Lect. Notes Math. 900, 101–228 (1982)CrossRefGoogle Scholar
  14. 14.
    Ehrig, M., Stroppel, C.: Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality Adv. Math. 331, 58–142 (2018)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)Google Scholar
  16. 16.
    Gao, M., Rui, H., Song, L., Su, Y.: Affine walled Brauer–Clifford superalgebras. arXiv:1708.05135v1
  17. 17.
    Goodman, F.M.: Remarks on cyclotomic and degenerate cyclotomic BMW algebras. J. Algebra 364, 13–37 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category \({\cal{O}}\). Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)Google Scholar
  20. 20.
    Lehrer, G., Zhang, R.B.: The first fundamental theorem of invariant theory for the orthosymplectic supergroup. Commun. Math. Phys. 349(2), 661–702 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lehrer, G., Zhang, R.B.: The Brauer category and invariant theory. J. Eur. Math. Soc. 17(9), 863–70 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Molve, A.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. American Mathematical Society, Providence (2007)CrossRefGoogle Scholar
  23. 23.
    Musson, I.M.: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics, vol. 131. American Mathematical Society, Providence (2012)CrossRefGoogle Scholar
  24. 24.
    Nazarov, M.: Young’s orthogonal form for Brauer’s centralizer algebra. J. Algebra 182(3), 664–693 (1996)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Reynolds, A.: Representation of oriented Brauer categories. PhD thesis, University of Oregon (2015)Google Scholar
  26. 26.
    Rui, H., Song, L.: Decomposition numbers of quantized walled Brauer algebras. Math. Zeit. 280(3–4), 669–689 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rui, H., Song, L.: Decomposition matrices of Birman–Murakami–Wenzl algebras. J. Algebra 444, 246–271 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Thomason, R.W.: Symmetric monoidal categories model all connective spectra. Theory Appl. Categ. 1(5), 78–118 (1995)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Turaev, V.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics, vol. 18. De Gruyter, Berlin (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical Science, Tongji UniversityShanghaiChina

Personalised recommendations