Advertisement

On nearly smooth complex spaces

  • Daniel Barlet
  • Jón Magnússon
Article
  • 13 Downloads

Abstract

We introduce a class of normal complex spaces having only mild singularities (close to quotient singularities) for which we generalize the notion of a (analytic) fundamental class for an analytic cycle and also the notion of a relative fundamental class for an analytic family of cycles. We also generalize to these spaces the geometric intersection theory for analytic cycles with rational positive coefficients and show that it behaves well with respect to analytic families of cycles. We prove that this intersection theory has most of the usual properties of the standard geometric intersection theory on complex manifolds, but with the exception that the intersection cycle of two cycles with positive integral coefficients that intersect properly may have rational coefficients.

Keywords

Quotient singularity The sheaf \(\omega _{X}^{\bullet }\) Fundamental class of cycles Analytic family of cycles Geometric intersection theory 

Mathematics Subject classifications

32 C 20 32 C 25 32 C 36 

Notes

Acknowledgements

The authors would like to thank the referee for comments that lead to improvements of the paper.

References

  1. 1.
    Barlet, D.: Espace analytique réduit des cycles analytiques compacts d’un espace analytique complexe de dimension finie, in Sém. F. Norguet II, Lecture Notes, vol. 482, pp. 1–158. Springer, New York (1975)Google Scholar
  2. 2.
    Barlet, D.: Le faisceau \(\omega_{X}^{\bullet }\) sur un espace complexe réduit de dimension pure, in Sém. F. Norguet III, Lecture Notes, vol. 670, pp. 187–204. Springer, New York (1978)Google Scholar
  3. 3.
    Barlet, D.: Familles analytiques de cycles et classes fondamentales relatives, in Sém. F. Norguet IV, Lecture Notes, vol. 807, pp. 1–24. Springer, New York (1980)Google Scholar
  4. 4.
    Barlet, D., Magnússon, J.: Cycles analytiques I: théorèmes de préparation des cycles. Cours spécialisés 22, SMF (2014)Google Scholar
  5. 5.
    Barlet, D., Magnússon, J.: Cycles analytiques complexes II. Cours spécialiés of the SMF (to appear)Google Scholar
  6. 6.
    Campana, F., Peternell, T.: Cycle Spaces, Several Complex Variables-Enc. Math, vol. 74. Springer, New York (1994)Google Scholar
  7. 7.
    Draper, R.: Intersection theory in complex analytic geometry. Math. Ann. 180, 175–204 (1969)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)CrossRefGoogle Scholar
  9. 9.
    Fulton, W., MacPherson, R.: Defining algebraic intersections. In: Proceeding of Symposium on Algebraic Geometry. University Tromsö, Tromsö, 1977), pp. 1–30, Lecture Notes in Math., vol. 687, Springer, Berlin, (1978)Google Scholar
  10. 10.
    Greb, D., Kebekus, S., Kovacs, S., Peternell, T.: Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Etudes Sci. No. 114, 87–169 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kollár, J.: Lectures on Resolution of Singularities. Priceton University Press, Priceton (2009)zbMATHGoogle Scholar
  12. 12.
    Tworzewski, P.: Intersection theory in complex analytic geometry. Ann. Polon. Math. 62(2), 177–191 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Elie Cartan, Géomètrie, Université de Lorraine, CNRS UMR 7502 and Institut Universitaire de FranceNancyFrance
  2. 2.Department of Mathematics, School of Engineering and Physical SciencesUniversity of IcelandReykjavíkIceland

Personalised recommendations