Advertisement

Homotopy invariance of cohomology and signature of a Riemannian foliation

  • Georges Habib
  • Ken RichardsonEmail author
Article
  • 7 Downloads

Abstract

We prove that any smooth foliation that admits a Riemannian foliation structure has a well-defined basic signature, and this geometrically defined invariant is actually a foliated homotopy invariant. We also show that foliated homotopic maps between Riemannian foliations induce isomorphic maps on basic Lichnerowicz cohomology, and that the Álvarez class of a Riemannian foliation is invariant under foliated homotopy equivalence.

Keywords

Riemannian foliation Transverse geometry Basic cohomology Twisted differential Basic signature 

Mathematics Subject Classification

53C12 53C21 58J50 58J60 

References

  1. 1.
    Ait Haddou, H.: Foliations and Lichnerowicz basic cohomology. Int. Math. Forum 2(49–52), 2437–2446 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Álvarez-López, J.A.: The basic component of the mean curvature of Riemannian foliations. Ann. Global Anal. Geom. 10, 179–194 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Álvarez López, J.A., Masa, X.: Morphisms of Pseudogroups and Foliated Maps, in Foliations, pp. 1–19. World Sci. Publ, Hackensack (2005)zbMATHGoogle Scholar
  4. 4.
    Banyaga, A.: Some properties of locally conformal symplectic structures. Comment. Math. Helv. 77(2), 383–398 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benameur, M., Rey-Alcantara, A.: La signature basique est un invariant d’homotopie feuilletée. C. R. Math. Acad. Sci. Paris 349(13–14), 787–791 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brüning, J., Kamber, F.W., Richardson, K.: Index theory for basic Dirac operators on Riemannian foliations. In: Noncommutative Geometry and Global Analysis, Contemp. Math., vol. 546, pp. 39–81. Amer. Math. Soc., ProvidenceGoogle Scholar
  7. 7.
    Domínguez, D.: Finiteness and tenseness theorems for Riemannian foliations. Am. J. Math. 120(6), 1237–1276 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Compos. Math. 73, 57–106 (1990)zbMATHGoogle Scholar
  9. 9.
    El Kacimi-Alaoui, A., Nicolau, M.: On the topological invariance of the basic cohomology. Math. Ann. 295(4), 627–634 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Glazebrook, J., Kamber, F.: Transversal Dirac families in Riemannian foliations. Commun. Math. Phys. 140, 217–240 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gorokhovesky, A., Lott, J.: The index of a transverse Dirac-type operator: the case of abelian Molino sheaf. J. Reine Angew. Math. 678, 125–162 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Habib, G., Richardson, K.: A brief note on the spectrum of the basic Dirac operator. Bull. Lond. Math. Soc. 41, 683–690 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Habib, G., Richardson, K.: Modified differentials and basic cohomology for Riemannian foliations. J. Geom. Anal. 23(3), 1314–1342 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Haller, S., Rybicki, T.: On the group of diffeomorphisms preserving a locally conformal symplectic structure. Ann. Global Anal. Geom. 17(5), 475–502 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ida, C., Popescu, P.: On the stability of transverse locally conformally symplectic structures. In: BSG Proc. 20, Balkan Soc, Geometers, Bucharest, pp. 1–8 (2013)Google Scholar
  16. 16.
    Kamber, F.W., Tondeur, Ph: Duality theorems for foliations, Transversal structure of foliations (Toulouse, 1982). Asté risque 116, 108–116 (1984)Google Scholar
  17. 17.
    Kamber, F.W., Tondeur, Ph: De Rham–Hodge theory for Riemannian foliations. Math. Ann. 277, 415–431 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Molino, P.: Riemannian Foliations, Progress in Mathematics, vol. 73. Birkhäuser, Boston (1988)CrossRefGoogle Scholar
  19. 19.
    Nozawa, H.: Rigidity of the Álvarez class. Manuscr. Math. 132(1–2), 257–271 (2010)CrossRefGoogle Scholar
  20. 20.
    Nozawa, H.: Continuity of the Álvarez class under deformations. J. Reine Angew. Math. 673, 125–159 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ornea, L., Slesar, V.: Basic Morse–Novikov cohomology for foliations. Math. Z. 284(1–2), 469–489 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Park, E., Richardson, K.: The basic Laplacian of a Riemannian foliation. Am. J. Math. 118, 1249–1275 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. Math. 69, 119–132 (1959)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Reinhart, B.L.: Differential Geometry of Foliations: The Fundamental Integrability Problem, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 99. Springer, Berlin (1983)CrossRefGoogle Scholar
  25. 25.
    Tondeur, Ph.: Geometry of Foliations, Monographs in Mathematics, vol. 90. Birkhäuser, Basel (1997)CrossRefGoogle Scholar
  26. 26.
    Vaisman, I.: Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compos. Math. 40(3), 287–299 (1980)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences IILebanese UniversityFanar-MatnLebanon
  2. 2.Department of MathematicsTexas Christian UniversityFort WorthUSA

Personalised recommendations