# Torsion and linking number for a surface diffeomorphism

- 41 Downloads

## Abstract

For a \(\mathcal{{C}}^1\) diffeomorphism \(f:\mathbb {R}^2\rightarrow \mathbb {R}^2\) isotopic to the identity, we prove that for any value \(l\in \mathbb {R}\) of the linking number at finite time of the orbits of two points there exists at least a point whose torsion at the same finite time equals \(l\in \mathbb {R}\). As an outcome, we give a much simplier proof of a theorem by Matsumoto and Nakayama concerning torsion of measures on \(\mathbb {T}^2\). In addition, in the framework of twist maps, we generalize a known result concerning the linking number of periodic points: indeed, we estimate such value for any couple of points for which the limit of the linking number exists.

## Notes

### Acknowledgements

The author is extremely grateful to Professor Marie-Claude Arnaud and Andrea Venturelli for their precious advices to improve the text and for many stimulating discussions. The author acknowledges the anonymous referee for his or her useful remarks and observations.

## References

- 1.Angenent, S.B.: The periodic orbits of an area preserving twist map. Commun. Math. Phys.
**115**, 353–374 (1988)MathSciNetCrossRefzbMATHGoogle Scholar - 2.Béguin, F., Boubaker, Z.R.: Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms. J. Math. Soc. Japan
**65**, 137–168 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 3.Chenciner, A.: La dynamique au voisinage d’un point fixe elliptique conservatif: de Poincaré et Birkhoff á Aubry et Mather, Astérisque. Seminar Bourbaki, vol. 1983/84, pp. 147–170 (1985)Google Scholar
- 4.Crovisier, S.: Ensembles de torsion nulle des applications déviant la verticale. Bulletin de la Société mathématique de France
**131**, 23–39 (2003)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall Inc., Upper Saddle River (1976)zbMATHGoogle Scholar
- 6.Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
- 7.Le Calvez, P.: Propriétés dynamiques des difféomorphismes de l’anneau et du tore, Astérisque, p. 131 (1991)Google Scholar
- 8.Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology
**21**, 457–467 (1982)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Mather, J.N.: Glancing billiards. Ergod. Theory Dyn. Syst.
**2**, 397–403 (1982)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Mather, J.N.: Amount of rotation about a point and the Morse index. Commun. Math. Phys.
**94**, 141–153 (1984)MathSciNetCrossRefzbMATHGoogle Scholar - 11.Mather, J.N.: Variational construction of orbits of twist diffeomorphisms. J. Am. Math. Soc.
**4**, 207–263 (1991)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Matsumoto, S., Nakayama, H.: On the Ruelle invariants for diffeomorphisms of the two torus. Ergod. Theory Dyn. Syst.
**22**, 1263–1267 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 13.Moser, J.: Monotone twist mappings and the calculus of variations. Ergod. Theory Dyn. Syst.
**6**, 401–413 (1986)MathSciNetCrossRefzbMATHGoogle Scholar - 14.Ruelle, D.: Rotation numbers for diffeomorphisms and flows. Annales de l’Institute Henri Poincaré Physique théorique
**42**, 109–115 (1985)MathSciNetzbMATHGoogle Scholar