Advertisement

Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 1337–1356 | Cite as

Weighted sum formulas of multiple zeta values with even arguments

  • Zhonghua LiEmail author
  • Chen Qin
Article
  • 64 Downloads

Abstract

We prove a weighted sum formula of the zeta values at even arguments, and a weighted sum formula of the multiple zeta values with even arguments and its zeta-star analogue. The weight coefficients are given by (symmetric) polynomials of the arguments. These weighted sum formulas for the zeta values and for the multiple zeta values were conjectured by L. Guo, P. Lei and J. Zhao.

Keywords

Multiple zeta values Multiple zeta-star values Bernoulli numbers Weighted sum formulas 

Mathematics Subject Classification

11M32 11B68 

References

  1. 1.
    Dilcher, K.: Sums of products of Bernoulli numbers. J. Number Theory 60, 23–41 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions, Proceedings of the Conference in memory of Tsuneo Arakawa. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato (eds.), World Scientific, New Jersey, 71-106, (2006)Google Scholar
  3. 3.
    Guo, L., Lei, P., Zhao, J.: Families of weighted sum formulas for multiple zeta values. Int. J. Number Theory 11(3), 997–1025 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hoffman, M.E.: Multiple harmonic series. Pacific J. Math. 152(2), 275–290 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194(2), 477–495 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hoffman, M.E.: Quasi-symmetric functions and mod \(p\) multiple harmonic sums. Kyushu J. Math. 69, 345–366 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoffman, M.E.: On multiple zeta values of even arguments. Int. J. Number Theory 13, 705–716 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142(2), 307–338 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li, Z., Qin, C.: Some relations deduced from regularized double shuffle relations of multiple zeta values, preprint, arXiv:1610.05480
  10. 10.
    Muneta, S.: Algebraic setup of non-strict multiple zeta values. Acta Arith. 136(1), 7–18 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Petojević, A., Srivastava, H.M.: Computation of Euler’s type sums of the products of Bernoulli numbers. Appl. Math. Lett. 22, 796–801 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Racinet, G.: Doubles melanges des polylogarithmes multiples aux racines de l’unite. Publ. Math. Inst. Hautes Études Sci. 95, 185–231 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesTongji UniversityShanghaiChina

Personalised recommendations