Zariski cancellation problem for non-domain noncommutative algebras

  • 157 Accesses


We study Zariski cancellation problem for noncommutative algebras that are not necessarily domains.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Abhyankar, S., Eakin, P., Heinzer, W.: On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23, 310–342 (1972)

  2. 2.

    Artin, M., Schelter, W.: Graded algebras of global dimension 3. Adv. Math. 66, 171–216 (1987)

  3. 3.

    Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras, vol. 1. In: Techniques of Representation Theory. London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006)

  4. 4.

    Auslander, M., Goldman, O.: The Brauer group of a commutative ring. Trans. Am. Math. Soc. 97, 367–409 (1960)

  5. 5.

    Bell, J., Zhang, J.J.: Zariski cancellation problem for noncommutative algebras. Sel. Math. (N.S.) 23(3), 1709–1737 (2017)

  6. 6.

    Belov-Kanel, A., Rowen, L., Yu, J.-T.: A short proof that the free associative algebra is Hopfian (2017). arXiv:1708.04361 (preprint)

  7. 7.

    Bokut’, L.A., L’vov, I.V., Kharchenko, V.K.: Noncommutative rings, in algebra II: noncommutative rings identities. In: Kostrikin, A.I., Shafarevich, I.R. (eds.) Encyclopaedia of Mathematical Sciences, vol. 18. Springer, New York (1991)

  8. 8.

    Brown, K.A., Yakimov, M.T.: Azumaya loci and discriminant ideals of PI algebras (2017). arXiv:1702.04305 (preprint )

  9. 9.

    Ceken, S., Palmieri, J., Wang, Y.-H., Zhang, J.J.: The discriminant controls automorphism groups of noncommutative algebras. Adv. Math. 269, 551–584 (2015)

  10. 10.

    Ceken, S., Palmieri, J., Wang, Y.-H., Zhang, J.J.: The discriminant criterion and the automorphism groups of quantized algebras. Adv. Math. 286, 754–801 (2016)

  11. 11.

    Chan, K., Young, A., Zhang, J.J.: Discriminant formulas and applications. Algebra Number Theory 10(3), 557–596 (2016)

  12. 12.

    Chan, K., Young, A., Zhang, J.J.: Discriminants and automorphism groups of Veronese subrings of skew polynomial rings. Math. Z. 288(3–4), 1395–1420 (2018)

  13. 13.

    Crachiola, A., Makar-Limanov, L.: On the rigidity of small domains. J. Algebra 284(1), 1–12 (2005)

  14. 14.

    Danielewski, W.: On the cancellation problem and automorphism groups of affine algebraic varieties (1989) (preprint, 8 pages, Warsaw)

  15. 15.

    Fieseler, K.-H.: On complex affine surfaces with \({{\mathbb{C}}}^+\)-action. Comment. Math. Helv. 69, 5–27 (1994)

  16. 16.

    Fujita, T.: On Zariski problem. Proc. Jpn. Acad. 55(A), 106–110 (1979)

  17. 17.

    Gaddis, J.: The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras. J. Pure Appl. Algebra 221(10), 2511–2524 (2017)

  18. 18.

    Gaddis, J., Kirkman, E., Moore, W.F.: On the discriminant of twisted tensor products. J. Algebra 477, 29–55 (2017)

  19. 19.

    Gaddis, J., Won, R., Yee, D.: Discriminants of Taft algebra smash products and applications (2017). arXiv:1707.02822 (preprint)

  20. 20.

    Gupta, N.: On the cancellation problem for the affine space \({\mathbb{A}}^3\) in characteristic \(p\). Invent. Math. 195(1), 279–288 (2014)

  21. 21.

    Gupta, N.: On Zariski’s cancellation problem in positive characteristic. Adv. Math. 264, 296–307 (2014)

  22. 22.

    Hasse, H., Schmidt, F.K.: Noch eine Begründung der theorie der höheren differrentialquotienten in einem algebraischen funktionenkorper einer unbestimmten. J. Reine Angew. Math. 177, 223–239 (1937)

  23. 23.

    Kraft, H.: Challenging problems on affine \(n\)-space. Sémin. Bourbaki 237, 295–317 (1996) (vol. 1994/95. astérisque no., exp. no. 802(5))

  24. 24.

    Krause, G.R., Lenagan, T.H.: Growth of algebras and Gelfand–Kirillov dimension. In: Research Notes in Mathematics, Pitman Advanced Publishing Program, vol. 116 (1985)

  25. 25.

    Levitt, J., Yakimov, M.: Quantized Weyl algebras at roots of unity. Israel J. Math. 225(2), 681–719 (2018)

  26. 26.

    Lewin, J.: Subrings of finite index in finitely generated rings. J. Algebra 5, 84–88 (1967)

  27. 27.

    Lü, J.-F., Mao, X.-F., Zhang, J.J.: Nakayama automorphism and applications. Trans. Am. Math. Soc. 369(4), 2425–2460 (2017)

  28. 28.

    Makar-Limanov, L.: On the hypersurface \(x+x^2y+z^2+t^3=0\) in \({\bf C}^4\) or a \({\bf C}^3\)-like threefold which is not \({\bf C}^3\). Israel J. Math. 96(part B), 419–429 (1996)

  29. 29.

    Malcev, A.I.: On the representations of infinite algebras. Rec. Math. (Mat. Sb.) N.S. (Russian) 13(55), 263–286 (1943)

  30. 30.

    Miyanishi, M., Sugie, T.: Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20, 11–42 (1980)

  31. 31.

    Negron, C.: The derived Picard group of an affine Azumaya algebra. Sel. Math. (N.S.) 23(2), 1449–1468 (2017)

  32. 32.

    Nguyen, B., Trampel, K., Yakimov, M.: Noncommutative discriminants via Poisson primes. Adv. Math. 322, 269–307 (2017)

  33. 33.

    Orzech, M., Ribes, L.: Residual finiteness and the Hopf property in rings. J. Algebra 15, 81–88 (1970)

  34. 34.

    Russell, P.: On affine-ruled rational surfaces. Math. Ann. 255(3), 287–302 (1981)

  35. 35.

    Schack, S.: Bimodules, the Brauer group, Morita equivalence, and cohomology. J. Pure Appl. Algebra 80(3), 315–325 (1992)

  36. 36.

    Small, L.W., Warfield Jr., R.B.: Prime affine algebras of Gel’fand–Kirillov dimension one. J. Algebra 91(2), 386–389 (1984)

  37. 37.

    Tang, X.: Automorphisms for some symmetric multiparameter quantized Weyl algebras and their localizations. Algebra Colloq. 24(3), 419–438 (2017)

  38. 38.

    Tang, X.: The automorphism groups for a family of generalized Weyl algebras. J. Algebra Appl. 17(8), 1850142 (2018)

  39. 39.

    Wilkens, J.: On the cancellation problem for surfaces. C. R. Acad. Sci. Paris Sér. I Math. 326, 1111–1116 (1998)

Download references


The authors thank the referee for his/her very careful reading and valuable comments and for allowing them to include Remark 5.5 in this paper. The authors thank Ken Goodearl and Daniel Krashen for many useful conversations on the subject, and thank Ken Goodearl for suggesting the term “retractable” in Definition 2.1 and Lance Small for providing the references [7, 29]. O. Lezama was partially supported by Universidad Nacional de Colombia (HERMES code 40482). Y.H. Wang was partially supported by the Nature Science Foundation of China (No.11871071), the Foundation of China Scholarship Council (Grant no. [2016]3099), the Foundation of Shanghai Science and Technology Committee (Grant no. 15511107300), the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China and the Innovation program of Shanghai Municipal Education Commission (no. 15ZZ037). J.J. Zhang was partially supported by the US National Science Foundation (nos. DMS-1402863 and DMS-1700825).

Author information

Correspondence to J. J. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lezama, O., Wang, Y. & Zhang, J.J. Zariski cancellation problem for non-domain noncommutative algebras. Math. Z. 292, 1269–1290 (2019) doi:10.1007/s00209-018-2153-7

Download citation


  • Zariski cancellation problem

Mathematics Subject Classification

  • Primary 16P99
  • 16W99