Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 1295–1335 | Cite as

Minimal two-spheres of low index in manifolds with positive complex sectional curvature

  • John Douglas MooreEmail author
  • Robert Ream


Suppose that \(S^n\) is given a generic Riemannian metric with sectional curvatures which satisfy a suitable pinching condition formulated in terms of complex sectional curvatures. This pinching condition is satisfied by manifolds whose real sectional curvatures \(K_r(\sigma )\) satisfy
$$\begin{aligned} 1/2 < K_r(\sigma ) \le 1. \end{aligned}$$
Then the number of minimal two spheres of Morse index \(\lambda \), for \(n-2 \le \lambda \le 2n-5\), is at least \(p_{3}(\lambda -n+2)\), where \(p_{3}(k)\) is the number of k-cells in the Schubert cell decomposition for \(G_3({\mathbb {R}}^{n+1})\).


  1. 1.
    Ballmann, W., Thorbergsson, G., Ziller, W.: Existence of closed geodesics on positively curved manifolds. J. Differ. Geom. 18, 221–252 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berger, M.: Sur quelques variétés riemanniennes suffisamment pincées. Bull. SMF 88, 57–71 (1960)zbMATHGoogle Scholar
  3. 3.
    Bott, R.: Lectures on Morse theory, old and new. Bull. Am. Math. Soc. 7, 331–358 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brendle, S., Schoen, R.: Manifolds with \(1/4\) pinched curvature are space forms. J. Am. Math. Soc. 22, 287–307 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brendle, S., Schoen, R.: Curvature, sphere theorems and the Ricci flow. Bull. Am. Math. Soc. 48, 1–32 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. Differ. Geom. 1, 111–125 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, J., Tian, G.: Compactification of moduli space of harmonic mapping. Comment. Math. Helv. 74, 201–237 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chern, S.S.: On minimal spheres in the four-sphere. In: Studies and Essays Presented to Yu-why Chen on his 60th Birthday, pp. 137–150. Mathematics Research Center, National Taiwan University, Taipei (1970)Google Scholar
  9. 9.
    Choi, H., Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. Invent. Math. 81, 387–394 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Colding, T., Minicozzi, W.: A Course in Minimal Surfaces. Graduate Studies in Mathematics, vol. 121. AMS, Providence (2011)zbMATHGoogle Scholar
  11. 11.
    Duistermaat, J., Kolk, J.: Lie Groups. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Eells, J.: A setting for global analysis. Bull. Am. Math. Soc. 72, 751–807 (1966)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ejiri, N.: The index of minimal immersions of \(S^2\) into \(S^{2n}\). Math. Z. 184, 127–132 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gromoll, D., Klingenberg, W., Meyer, W.: Riemannian Geometrie im Grossen. Springer Lecture Notes, vol. 55. Springer, Berlin (1968)zbMATHGoogle Scholar
  15. 15.
    Grothendieck, A.: Sur la classification des fibres holomorphes sur la sphere de Riemann. Am. J. Math. 79, 121–138 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gunning, R.: Lectures on Riemann Surfaces. Princeton University Press, Princeton (1966)zbMATHGoogle Scholar
  17. 17.
    Hingston, N.: Equivariant Morse theory and closed geodesics. J. Differ. Geom. 19, 85–116 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hirsch, M.: Differential Topology. Springer, New York (1976)CrossRefzbMATHGoogle Scholar
  19. 19.
    Korevaar, N.: Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37, 73–93 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Koszul, J.-L., Malgrange, B.: Sur certaines structure fibrés complexes. Arch. Math. 9, 102–109 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lang, S.: Differential and Riemannian Manifolds. Springer, New York (1996)Google Scholar
  22. 22.
    Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)CrossRefzbMATHGoogle Scholar
  23. 23.
    McCleary, J.: A User’s Guide to Spectral Sequences, 2nd edn. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    Micallef, M., Moore, J.D.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. 127, 199–227 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)zbMATHGoogle Scholar
  26. 26.
    Milnor, J.: Lectures on the \(h\)-Cobordism Theorem. Princeton University Press, Princeton (1965)CrossRefzbMATHGoogle Scholar
  27. 27.
    Milnor, J.: Geometry and dynamics of quadratic rational maps. Exp. Math. 2, 37–83 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press, Princeton (1974)zbMATHGoogle Scholar
  29. 29.
    Moore, J.D.: On the number of minimal two-spheres of small area in manifolds with curvature bounded above. Math. Ann. 288, 323–343 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Moore, J.D.: Bumpy Riemannian metrics and closed parametrized minimal surfaces in Riemannian manifolds. Trans. Am. Math. Soc. 358, 5193–5296 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Moore, J.D.: Lectures on Global Analysis: Minimal Surfaces in Riemannian Manifolds. Graduate Studies in Mathematics, vol. 187. American Mathematical Society, Providence (2017)Google Scholar
  32. 32.
    Palais, R.: Lusternik–Schnirelmann theory on Banach manifolds. Topology 5, 115–132 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Parker, T.: Bubble tree convergence for harmonic maps curvature flow. J. Differ. Geom. 44, 595–633 (1996)CrossRefzbMATHGoogle Scholar
  34. 34.
    Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \(2\)-spheres. Ann. Math. 113, 1–24 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Schwarz, M.: Morse Homology. Birkhäuser, Basel (1993)CrossRefzbMATHGoogle Scholar
  36. 36.
    Smale, S.: An infinite-dimensional version of Sard’s theorem. Am. J. Math. 87, 861–866 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Uhlenbeck, K.: Morse theory on Banach manifolds. J. Funct. Anal. 10, 430–445 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wasserman, A.G.: Equivariant differential topology. Topology 8, 127–150 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wolf, J.: Spaces of Constant Curvature. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  40. 40.
    Yang, P., Yau, S.T.: Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Annali Scuola Normale Superiore Pisa 7, 55–63 (1980)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations