Advertisement

Harnack inequality and continuity of weak solutions for doubly degenerate elliptic equations

  • G. Di Fazio
  • M. S. Fanciullo
  • P. Zamboni
Article
  • 19 Downloads

Abstract

We prove Harnack inequality and regularity for solutions of a quasilinear doubly degenerate elliptic equation generated by Grushin vector fields. We assume the coefficients of the structure conditions to belong to suitable Stummel–Kato classes.

Keywords

Grushin operator Strong \(A_{\infty }\) Weights Stummel–Kato classes Harnack inequality 

Mathematics Subject Classification

35J70 35B65 

References

  1. 1.
    Aizenman, M., Simon, B.: Brownian motion and Harnack’s inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–271 (1982)CrossRefGoogle Scholar
  2. 2.
    Buckley, S.M.: Inequalities of John–Nirenberg type in doubling spaces. J. Anal. Math. 79, 215–240 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Danielli, D.: A Fefferman–Phong type inequality and applications to quasi linear subelliptic equations. Potential Anal. 115, 387–413 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Danielli, D., Garofalo, N., Nhieu, D.: Trace inequalities for Carnot–Caratheodory spaces and applications. Ann. Scuola Norm. Sup. Pisa 4, 195–252 (1998)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Di Fazio, G.: Dirichlet problem characterization of regularity. Manuscr. Math. 84, 47–56 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Di Fazio, G., Zamboni, P.: Hölder continuity for quasilinear subelliptic equations in Carnot Caratheodory spaces. Math. Nachr. 272, 3–10 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Di Fazio, G., Zamboni, P.: Fefferman Poincare inequality and regularity for quasilinear subelliptic equations. Lect. Notes Sem. Inter. Matematica 3, 103–122 (2004)zbMATHGoogle Scholar
  8. 8.
    Di Fazio, G., Zamboni, P.: Local regularity of solutions to quasilinear subelliptic equations in Carnot Carathéodory spaces. Boll. Unione Mat. Ital. B (8) 9(2), 485–504 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Di Fazio, G., Zamboni, P.: Regularity for quasilinear degenerate elliptic equations. Math. Z. 253, 787–803 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Di Fazio, G., Fanciullo, M.S., Zamboni, P.: Harnack inequality and smoothness for quasilinear degenerate elliptic equations. J. Differ. Equ. 245(10), 2939–2957 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Di Fazio, G., Fanciullo, M.S., Zamboni, P.: Harnack inequality and regularity for degenerate quasilinear elliptic equations. Math. Z. 264, 679–695 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Di Fazio, G., Fanciullo, M.S., Zamboni, P.: Harnack inequality for a class of strongly degenerate elliptic operators formed by Hörmander vector fields. Manuscr. Math. 135(3–4), 361–380 (2011)CrossRefGoogle Scholar
  13. 13.
    Di Fazio, G., Fanciullo, M.S., Zamboni, P.: Regularity for a class of strongly degenerate quasilinear operators. J. Differ. Equ. 255(11), 3920–3939 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Franchi, B., Gutierrez, C.E., Wheeden, R.: Two-weight Sobolev–Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators. Rend. Mat. Acc. Lincei 5, 167–175 (1994)zbMATHGoogle Scholar
  15. 15.
    Franchi, B., Gutierrez, C.E., Wheeden, R.: Weighted Sobolev–Poincaré inequalities for Grushin type operators. Commun. PDE 19, 523–604 (1994)CrossRefGoogle Scholar
  16. 16.
    Serrin, J.: Local behaviour of solutions of quasilinear equations. Acta Math. 111, 247–302 (1964)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vitanza, C., Zamboni, P.: Necessary and sufficient conditions for hölder continuity of solutions of degenerate schrödinger operators. Le Matematiche 52(2), 393–409 (1997)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zamboni, P.: Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions. J. Differ. Equ. 182(1), 121–140 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations