Advertisement

Virtual vector bundles and graded Thom spectra

  • Steffen Sagave
  • Christian Schlichtkrull
Article
  • 45 Downloads

Abstract

We introduce a convenient framework for constructing and analyzing orthogonal Thom spectra arising from virtual vector bundles. This framework enables us to set up a theory of orientations and graded Thom isomorphisms with good multiplicative properties. The theory is applied to the analysis of logarithmic structures on commutative ring spectra.

Notes

Acknowledgements

The authors would like to thank the referee for useful comments on the paper.

References

  1. 1.
    Ando, M., Blumberg, A.J., Gepner, D., Hopkins, M.J., Rezk, C.: Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol. 7(4), 1077–1117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Grayson, D.: Higher algebraic K-theory. II (after Daniel Quillen). Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976). Lecture Notes in Mathematics, vol. 551, pp. 217–240. Springer, Berlin (1976)Google Scholar
  3. 3.
    Hirschhorn, P.S.: Model categories and their localizations, mathematical surveys and monographs, vol. 99. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  4. 4.
    Hollender, J., Vogt, R.M.: Modules of topological spaces, applications to homotopy limits and \(E_\infty \) structures. Arch. Math. (Basel) 59(2), 115–129 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kro, T.A.: Model structure on operads in orthogonal spectra. Homol. Homot. Appl. 9(2), 397–412 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lewis Jr., L.G.: When is the natural map X \(\rightarrow \Omega \Sigma \) X a cofibration? Trans. Amer. Math. Soc. 273(1), 147–155 (1982)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lind, J.A.: Diagram spaces, diagram spectra and spectra of units. Algebr. Geom. Topol. 13(4), 1857–1935 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lewis Jr., L.G., May, J.P., Steinberger, M., McClure, J.E.: Equivariant stable homotopy theory. Lecture Notes in Mathematics, vol. 1213. Springer, Berlin (1986). With contributions by J. E. McClureGoogle Scholar
  9. 9.
    May, J. P.: The geometry of iterated loop spaces. Lectures Notes in Mathematics, vol. 271. Springer, Berlin, New York (1972)Google Scholar
  10. 10.
    May, J.P.: Classifying spaces and fibrations. Mem. Amer. Math. Soc. 1(155), xiii+98 (1975)MathSciNetzbMATHGoogle Scholar
  11. 11.
    May, J.P.: \(E_\infty \) ring spaces and \(E_\infty \) ring spectra. Lecture Notes in Mathematics, vol. 577. Springer, Berlin (1977). With contributions by Frank Quinn, Nigel Ray, and Jørgen TornehaveCrossRefzbMATHGoogle Scholar
  12. 12.
    Mandell, M.A., May, J.P.: Equivariant orthogonal spectra and S-modules. Mem. Amer. Math. Soc. 159(755), x+108 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mandell, M.A., May, J.P., Schwede, S., Shipley, B.: Model categories of diagram spectra. Proc. Lond. Math. Soc. 82(2), 441–512 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rognes, J.: Topological logarithmic structures, New topological contexts for Galois theory and algebraic geometry (BIRS 2008). Geom. Topol. Monogr. 16, 401–544 (2009)CrossRefGoogle Scholar
  15. 15.
    Rezk, C., Schwede, S., Shipley, B.: Simplicial structures on model categories and functors. Amer. J. Math. 123(3), 551–575 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rognes, J., Sagave, S., Schlichtkrull, C.: Localization sequences for logarithmic topological Hochschild homology. Math. Ann. 363(3–4), 1349–1398 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rognes, J., Sagave, S., Schlichtkrull, C.: Logarithmic topological Hochschild homology of topological K-theory spectra. J. Eur. Math. Soc. (JEMS) 20(2), 489–527 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sagave, S.: Logarithmic structures on topological K-theory spectra. Geom. Topol. 18(1), 447–490 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sagave, S.: Spectra of units for periodic ring spectra and group completion of graded \(E_\infty \) spaces. Algebr. Geom. Topol. 16(2), 1203–1251 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schlichtkrull, C.: Units of ring spectra and their traces in algebraic K-theory. Geom. Topol. 8, 645–673 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schlichtkrull, C.: The cyclotomic trace for symmetric ring spectra, New topological contexts for Galois theory and algebraic geometry (BIRS 2008). Geom. Topol. Monogr. 16, 545–592 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Schlichtkrull, C.: Thom spectra that are symmetric spectra. Doc. Math. 14, 699–748 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Schwede, S.: Symmetric spectra. An untitled book project about symmetric spectra, v 2.4. Mathematisches Institut, Universität Bonn, GermanyGoogle Scholar
  24. 24.
    Sagave, S., Schlichtkrull, C.: Diagram spaces and symmetric spectra. Adv. Math. 231(3–4), 2116–2193 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sagave, S., Schlichtkrull, C.: Group completion and units in I-spaces. Algebr. Geom. Topol. 13(2), 625–686 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stolz, M.: Equivariant structure on smash powers of commutative ring spectra, Ph.D. Thesis. University of Bergen, Bergen (2011)Google Scholar
  27. 27.
    Thomason, R.W.: Homotopy colimits in the category of small categories. Math. Proc. Camb. Philos. Soc. 85(1), 91–109 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radboud University Nijmegen, IMAPPNijmegenThe Netherlands
  2. 2.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations