Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 329–363 | Cite as

On central leaves of Hodge-type Shimura varieties with parahoric level structure

  • Wansu KimEmail author


Kisin and Pappas (Publ Math Inst Hautes Études Sci, 2018) constructed integral models of Hodge-type Shimura varieties with parahoric level structure at \(p>2\), such that the formal neighbourhood of a mod p point can be interpreted as a deformation space of p-divisible group with some Tate cycles (generalising Faltings’ construction). In this paper, we study the central leaf and the closed Newton stratum in the formal neighbourhoods of mod p points of Kisin–Pappas integral models with parahoric level structure; namely, we obtain the dimension of central leaves and the almost product structure of Newton strata. In the case of hyperspecial level structure (i.e., in the good reduction case), our main results were already obtained by Hamacher (Math Z 287(3–4):1255–1277, 2017), and we show that the result of this paper holds for ramified groups as well.


Shimura varieties of Hodge type Deformations of p-divisible groups 

Mathematics Subject Classification

14L05 14G35 



The author thanks Paul Hamacher for many helpful discussions, and Julien Hauseux for his help with group theory used in the proof of Proposition 3.1.4. The author would also like to thank the anonymous referee whose comments were greatly helpful. This work was supported by the EPSRC (Engineering and Physical Sciences Research Council) in the form of EP/L025302/1.


  1. 1.
    Berthelot, P.: Théorie de Dieudonné sur un anneau de valuation parfait. Ann. Sci. École Norm. Sup. (4) 13(2), 225–268 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Inst. Hautes Études Sci. Publ. Math. 60, 197–376 (1984)CrossRefzbMATHGoogle Scholar
  3. 3.
    Caraiani, A., Scholze, P.: On the generic part of the cohomology of compact unitary Shimura varieties. Ann. Math. 186(3), 649–766 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chai, C.-L.: Hecke orbits on Siegel modular varieties, Geometric Methods in Algebra and Number Theory, Progress in Mathematics, vol. 235. Birkhäuser, Boston, pp. 71–107 (2005)Google Scholar
  5. 5.
    de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. 82, 5–96 (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Deligne, P.: Hodge cycles on abelian varieties, Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, vol. 900. Springer, Berlin (1982)Google Scholar
  7. 7.
    Faltings, G.: Integral crystalline cohomology over very ramified valuation rings. J. Am. Math. Soc. 12(1), 117–144 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fargues, L., Fontaine, J.-M.: Vector bundles and \(p\)-adic Galois representations. In: Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1, vol. 2, Amer. Math. Soc., Providence pp. 77–113 (2012)Google Scholar
  9. 9.
    Haines, T.J., Rapoport, M.: Shimura varieties with \(\Gamma_1(p)\)-level via Hecke algebra isomorphisms: the Drinfeld case. Ann. Sci. Éc. Norm. Supér. (4) 45(5), 719–785 (2013)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hamacher, P.: The almost product structure of Newton strata in the deformation space of a Barsotti-Tate group with crystalline Tate tensors. Math. Z. 287(3–4), 1255–1277 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hamacher, P.: On the Newton stratification in the good reduction of Shimura varieties (preprint) (2016). arXiv:1605.05540
  12. 12.
    Hamacher, P., Kim, W.: \(l\)-adic étale cohomology of Shimura varieties of Hodge type with non-trivial coefficients (preprint) (2017). arXiv:1711.07123
  13. 13.
    Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001). With an appendix by Vladimir G. BerkovichGoogle Scholar
  14. 14.
    Hartl, U., Viehmann, E.: Foliations in deformation spaces of local \(G\)-shtukas. Adv. Math. 229(1), 54–78 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    He, X.: Geometric and homological properties of affine Deligne-Lusztig varieties. Ann. Math. 179(1), 367–404 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    He, X.: Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties. Ann. Sci. Éc. Norm. Supér. (4) 49(5), 1125–1141 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Howard, B., Pappas, G.: Rapoport-Zink spaces for spinor groups. Compos. Math. 153(5), 1050–1118 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Katz, N.M.: Slope filtration of \(F\)-crystals. Journées de Géométrie Algébrique de Rennes (Rennes, 1978), vol. I. Astérisque, vol. 63, Soc. Math. France, Paris, pp. 113–163 (1979)Google Scholar
  19. 19.
    Katz, N.: Serre–Tate Local Moduli, Algebraic Surfaces (Orsay, 1976–78), Lecture Notes in Math., vol. 868. Springer, Berlin, pp. 138–202 (1981)Google Scholar
  20. 20.
    Kim, W.: Rapoport–Zink spaces of Hodge type. Forum Math. Sigma 6, e8 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kim, W.: Rapoport–Zink uniformisation of Hodge-type Shimura varieties (preprint) (2015)Google Scholar
  22. 22.
    Kisin, M.: Integral models for Shimura varieties of abelian type. J. Am. Math. Soc. 23(4), 967–1012 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kisin, M.: Mod\(p\) points on Shimura varieties of abelian type. J. Amer. Math. Soc 30(3), 819–914 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kisin, M., Pappas, G.: Integral models of Shimura varieties with parahoric level structure. Publ. Math. Inst. Hautes Études Sci. (2018).
  25. 25.
    Kottwitz, R.E.: Isocrystals with additional structure. Compos. Math. 56(2), 201–220 (1985)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kottwitz, R.E.: Isocrystals with additional structure. II. Compos. Math. 109(3), 255–339 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lau, E.: Relations between Dieudonné displays and crystalline Dieudonné theory. Algebra Number Theory 8(9), 2201–2262 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mantovan, E.: On certain unitary group Shimura varieties, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales, Astérisque, vol. 291, Soc. Math. France, Paris, pp. 201–331 (2004)Google Scholar
  29. 29.
    Mantovan, E.: On the cohomology of certain PEL-type Shimura varieties. Duke Math. J. 129(3), 573–610 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Moonen, B.: Models of Shimura varieties in mixed characteristics, Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254. Cambridge University Press, Cambridge, pp. 267–350 (1998)Google Scholar
  31. 31.
    Neupert, S.: Foliations and the cohomology of moduli spaces of bounded global \(G\)-shtukas. (preprint) arXiv:1610.95935
  32. 32.
    Oort, F.: Foliations in moduli spaces of abelian varieties. J. Am. Math. Soc. 17(2), 267–296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Oort, F.: Foliations in moduli spaces of abelian varieties and dimension of leaves, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin., vol. II, Progr. Math., vol. 270. Birkhäuser, Boston, pp. 465–501 (2009)Google Scholar
  34. 34.
    Pappas, G., Zhu, X.: Local models of Shimura varieties and a conjecture of Kottwitz. Invent. Math. 194(1), 147–254 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rapoport, M.: A guide to the reduction modulo \(p\) of Shimura varieties. Automorphic forms. I. Astérisque, vol. 298, Soc. Math. France, Paris, pp. 271–318 (2005)Google Scholar
  36. 36.
    Rapoport, M., Richartz, M.: On the classification and specialization of \(F\)-isocrystals with additional structure. Compos. Math. 103(2), 153–181 (1996)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Rapoport, M., Viehmann, E.: Towards a theory of local Shimura varieties. Münster J. Math. 7(1), 273–326 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Rapoport, M., Zink, T.: Period spaces for \(p\)-divisible groups, Annals of Mathematics Studies, vol. 141. Princeton University Press, Princeton (1996)zbMATHGoogle Scholar
  39. 39.
    Scholze, P., Weinstein, J.: Moduli of \(p\)-divisible groups. Camb. J. Math. 1(2), 145–237 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Viehmann, E., Wu, H.: Central leaves in loop groups. Math. Res. Letters (2018) (to appear)Google Scholar
  41. 41.
    Zhou, R.: Mod-\(p\) isogeny classes on Shimura varieties with parahoric level structure (preprint) (2017). arXiv:1707.09685
  42. 42.
    Zink, T.: A Dieudonné theory for \(p\)-Divisible Groups, Class Field Theory—Its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., vol. 30. Math. Soc. Japan, Tokyo, pp. 139–160 (2001)Google Scholar
  43. 43.
    Zink, T.: On the slope filtration. Duke Math. J. 109(1), 79–95 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.KIAS, Department of MathematicsSeoulSouth Korea

Personalised recommendations