Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 195–197 | Cite as

An extension of Bonnet–Myers theorem

  • Jianming WanEmail author


We give a complementary generalization of the extensions of Bonnet–Myers theorem obtained by Calabi and also Cheeger–Gromov–Taylor.


Bonnet–Myers theorem Ricci curvature Ray 

Mathematics Subject Classification

53C20 53C21 


  1. 1.
    Calabi, E.: On Ricci curvature and geodesics. Duke Math. J. 34, 667–676 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dai, X., Wei, G.: A comparison-estimate of Toponogov type for Ricci curvature. Math. Ann. 303(2), 297–306 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wu, H., Shen, C., Yu, Y.: An Introduction to Riemannian Geometry (in Chinese). Beijing University Press, Beijing (1989)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsNorthwest UniversityXi’anChina

Personalised recommendations