Advertisement

Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 85–111 | Cite as

An ODE approach for fractional Dirichlet problems with gradient nonlinearity

  • Gonzalo Dávila
  • Alexander Quaas
  • Erwin ToppEmail author
Article
  • 74 Downloads

Abstract

In the present work we study existence of solutions of fractional Dirichlet problems in the presence of coercive gradient terms with growth comparable and slightly bigger than the order of the nonlocal elliptic operator. We develop a 1-dimensional reduction that allows us to construct barriers via ODE methods and therefore to obtain existence results based on an integral criterion that resembles the classical second-order case.

Notes

Acknowledgements

G. Dávila was partially supported by Fondecyt Grant No. 11150880. E. Topp was partially supported by Conicyt PIA Grant No. 79150056, and Fondecyt Grant No. 11160817. A. Quaas was partially supported by Fondecyt Grant No. 1151180, Programa Basal, CMM. U. de Chile and Millennium Nucleus Center for Analysis of PDE NC130017.

References

  1. 1.
    Abatangelo, N.: Very large solutions for the fractional Laplacian: towards a fractional Keller-Osserman condition, Adv. Nonlinear Anal. ISSN (Online) 2191-950X, ISSN (Print) 2191-9496 (2016).  https://doi.org/10.1515/anona-2015-0150
  2. 2.
    Abdellaoui, B., Peral, I.: Towards a deterministic KPZ equation with fractional diffusion: the stationary case. PreprintGoogle Scholar
  3. 3.
    Alarcón, S., García-Melián, J., Quaas, A.: Existence and non-existence of solutions to elliptic equations with a general convection term. Proc. R. Soc. Edinburgh: Sec. A 144(2), 225–239 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Annales de L’I.H.P., section C 13(3), 293–317 (1996)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barles, G., Chasseigne, E., Imbert, C.: On the Dirichlet problem for second order elliptic integro-differential equations. Indiana Univ. Math. J. 57(1), 213–246 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. IHP Anal. Non Linéare 25(3), 567–585 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barles, G., Perthame, B.: Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Opt. 26, 1133–1148 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Barles, G., Topp, E.: Existence, uniqueness and asymptotic behavior for nonlocal parabolic problems with dominating gradient terms. SIAM J. Math. Anal. 48(2), 1512–1547 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bogdan, K., Burdzy, K., Chen, Z.-Q.: Censored stable processes. Prob. Theory Rel. Fields 127(1), 89–152 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Da Lio, F.: Comparison results for quasilinear equations in annular domains and applications. Comm. Partial Diff. Equ. 27(1 & 2), 283–323 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dávila, G., Quaas, A., Topp, E.: Continuous viscosity solutions for nonlocal Dirichlet problems with coercive gradient terms. Math. Ann. (2016).  https://doi.org/10.1007/s00208-016-1481-3
  13. 13.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001)zbMATHGoogle Scholar
  15. 15.
    Ishii, H.: Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ishii, H., Nakamura, G.: A class of integral equations and approximation of p-Laplace equations. Calc. Var. PDE, 37, 485–522 (2010)Google Scholar
  17. 17.
    Lasry, J.M., Lions, P.L.: Nonlinear elliptic Equations with Singular Boundary Conditions and Stochastic Control with State Constraints. Math. Ann. 283, 583–630 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Leonori, T., Porretta, A.: Large solutions and gradient bounds for quasilinear elliptic equations. Commun. Partial Differ. Equ. 10(1080/03605302), 1169286 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kawohl, B., Kutev, N.: A study on gradient blow up for viscosity solutions of fully nonlinear. Uniformly Elliptic Equ. Act. Math. Scientia 32 B(1), 15–40 (2012)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. Journal de Mathèmatiques Pures et Appliquées 101(3), 275–302 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Topp, E.: Existence and uniqueness for integro-differential equations with dominating drift terms. Comm. Partial Differ. Equ. 39(8), 1523–1554 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaisoChile
  2. 2.Departamento de Matemática y C.C.Universidad de Santiago de ChileSantiagoChile

Personalised recommendations