Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 55–84 | Cite as

Maximal bottom of spectrum or volume entropy rigidity in Alexandrov geometry

  • Yin JiangEmail author


Li and Wang [J Differ Geom 58:501–534 (2001), J Differ Geom 62:143–162 (2002)] proved a splitting theorem for an n-dimensional Riemannian manifold with \(Ric \ge -(n-1)\) and the bottom of spectrum \(\lambda _0(M)=\frac{(n-1)^2}{4}\). For an n-dimensional compact manifold M with \(Ric\ge -(n-1)\) with the volume entropy \(h(M)=n-1\), Ledrappier and Wang (J Differ Geom 85:461–477, 2010) proved that the universal cover \(\widetilde{M}\) is isometric to the hyperbolic space \(\mathbb {H}^n\). We will prove analogue theorems for Alexandrov spaces.



We are grateful to Xiantao Huang, RenJin Jiang, Shicheng Xu and Huichun Zhang for helpful discussions. We also thank Xiaochun Rong for helpful suggestions. The author is partially supported by a fund of China Postdoctoral Science Foundation, no. 2017M620828.


  1. 1.
    Alexander, S., Bishop, R.: A cone splitting theorem for Alexandrov spaces. Pac. J. Math. 218, 1–16 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry–Émery condition, the gradient estimates and the local-to-global property of \(RCD^*(K, N)\) metric measure spaces. J. Geom. Anal. 26, 24–56 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertrand, J.: Existence and uniqueness of optimal maps on Alexandrov spaces. Adv. Math. 219(3), 838–851 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Björn, A., Björn, J.: Nonlinear potential theory on metric spaces, EMS tracts in mathematics, vol. 17. European Mathematical Society (EMS), Zurich (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Buckley, S.M., Koskela, P.: Ends of metric measure spaces and Sobolev inequalities. Math. Z. 252(2), 275–285 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. AMS (2001)Google Scholar
  7. 7.
    Burago, Y., Gromov, M., Perel’man, G.: AD Alexandrov spaces with curvature bounded below. Russ. Math. Surv. 47, 1–58 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cheeger, J., Colding, T.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144, 189–237 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, L., Rong, X., Xu, S.: Quantitive volume rigidity of space form with lower Ricci curvature bound. J. Diff. Geom. (to appear)Google Scholar
  11. 11.
    Gigli, N.: The splitting theorem in the non-smooth context. arxiv:1302.5555 (2013) (preprint)
  12. 12.
    Gigli, N.: An overview on the proof of the splitting theorem in non-smooth context. Anal. Geom. Metr. Spaces 2, 169C213 (2014)Google Scholar
  13. 13.
    Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hörmander, L.: The analysis of linear partial differential operators I, 2nd edn. In: Grundlehren der math- ematischen Wissenschaften, 256. Springer, Berlin (1989)Google Scholar
  15. 15.
    Hua, B., Xia, C.: A note on local gradient estimate on Alexandrov spaces. Tohuku Math. J. 66(2), 259–267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hua, B., Kell, M., Xia, C.: Harmonic functions on metric measure spaces. arXiv:1308.3607
  17. 17.
    Ji, L.Z., Li, P., Wang, J.: Ends of locally symmetric spaces with maximal bottom spectrum. J. Reine. Angew. Math. 632, 1–35 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jiang, R.: Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal. 37(3), 281–301 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces. Math. Z. 238(2), 269–316 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ledrappier, F., Wang, X.: An integral formula for the volume entropy with application to rigidity. J. Diff. Geom. 85, 461–477 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Peter Li.: Geometric analysis, Cambridge studies in advanced mathematics, vol 134. Cambridge University Press, Cambridge, pp x + 406 (2012)Google Scholar
  22. 22.
    Li, P., Wang, J.: Complete manifolds with positive spectrum I. J. Differ. Geom. 58, 501–534 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, P., Wang, J.: Complete manifolds with positive spectrum II. J. Differ. Geom. 62, 143–162 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li, P., Tam, L.F.: Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 35, 359–383 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, G.: A short proof to the rigidity of volume entropy. Math. Res. Lett. 18(1), 151–153 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Manning, A.: Topological entropy for geodesic flows. Ann. Math. 2, 567–573 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mondino, A., Naber, A.: Structure theory of metric measure spaces with lower Ricci curvature bounds I. 1405.2222
  28. 28.
    Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Difer. Geom. 39(3), 629–658 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Perelman, G.: DC structure on Alexandrov spaces, Preprint, preliminary version available online at
  30. 30.
    Perelman, G., Petrunin, A.: Quasigeodesics and gradient curves in Alexandrov spaces. (Preprint) (1994)
  31. 31.
    Petrunin, A.: Subharmonic functions on Alexandrov space. (1996) (Preprint)
  32. 32.
    Petrunin, A.: Parallel transportation for Alexandrov spaces with curvature bounded below. Geom. Funct. Anal. 8(1), 123–148 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Petrunin, A.: Harmonic functions on Alexandrov space and its applications. ERA Am. Math. Soc 9, 135–141 (2003)zbMATHGoogle Scholar
  34. 34.
    Petrunin, A.: Semiconcave functions in Alexandrovs geometry. Surv. Differ. Geom. 11, 137–201 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Munster J. Math. 4, 53–64 (2011)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique. Progress in mathematics. Birkhauser, Basel (2008)zbMATHGoogle Scholar
  37. 37.
    Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \(RCD (K,\infty )\) metric measure spaces. Disc. Cont. Dyn. Syst. A 34, 1641–1661 (2014)CrossRefzbMATHGoogle Scholar
  38. 38.
    Sturm, K.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wang, X.: Harmonic functions, entropy, and a characterization of the hyperbolic space. J. Geom. Anal. 18(1), 272–284 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang, H.C., Zhu, X.P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Comm. Anal. Geom. 18(3), 503–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, H.C., Zhu, X.P.: Yau’s gradient estimates on Alexandrov spaces. J. Difer. Geom. 91(3), 445–522 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zhang, H.C., Zhu, X.P.: Local Li–Yau’s estimates on metric measure spaces. Calc. Var. Partial Differ. Equ. 55(4), 1–30 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics DepartmentCapital Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations