Checkerboard style Schur multiple zeta values and odd single zeta values



We give explicit formulas for the recently introduced Schur multiple zeta values, which generalize multiple zeta(-star) values and which assign to a Young tableaux a real number. In this note we consider Young tableaux of various shapes, filled with alternating entries like a Checkerboard. In particular we obtain new sum representation for odd single zeta values in terms of these Schur multiple zeta values. As a special case we show that some Schur multiple zeta values of Checkerboard style, filled with 1 and 3, are given by determinants of matrices with odd single zeta values as entries.


Multiple zeta values Schur functions Jacobi–Trudi formula Hypergeometric functions Hankel determinants 

Mathematics Subject Classification

11M41 05E05 33C05 



The authors would like to thank Don Zagier for his ideas on parts of the proof of Theorem 3.5, Wadim Zudilin for helpful discussion on the topic, Steven Charlton for corrections and calculations in Section 5 and the Max-Planck-Institut für Mathematik in Bonn for hospitality and support.


  1. 1.
    Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, R.G., Rankin, R.A. (eds.): R.J. Evan Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions. In: Ramanujan Revisited: Proceedings of the Centenary Conference (University of Illinois at Urbana-Champaign), pp. 537–560. Academic Press, Boston (1988)Google Scholar
  2. 2.
    Bachmann, H.: Interpolated Schur multiple zeta values. J. Aust. Math. Soc. 2017, 1–19 (2017). CrossRefGoogle Scholar
  3. 3.
    Borwein, J., Bradley, D., Broadhurst, D.: Combinatorial aspects of multiple zeta value. Electron. J. Combin. 5, 1–12 (1998)MathSciNetMATHGoogle Scholar
  4. 4.
    Borwein, J., Bradley, D., Broadhurst, D., Lisonek, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bowman, D., Bradley, D.: Resolution of some open problems concerning multiple zeta evaluations of arbitrary depth. Compos. Math. 139(1), 85–100 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Haynes, A., Zudilin, W.: Hankel determinants of zeta values. SIGMA Symmetry Integrability Geom. Methods Appl. 11(101), 1–5 (2015)MathSciNetMATHGoogle Scholar
  7. 7.
    Kaneko, M., Yamamoto, S.: A new integral-series identity of multiple zeta values and regularizations (2016). Preprint arXiv:1605.03117
  8. 8.
    Monien, H.: Hankel determinants of Dirichlet series (2009). Preprint arXiv:0901.1883
  9. 9.
    Muneta, S.: On some explicit evaluations of multiple zeta-star values. J. Number Theory 128(9), 2538–2548 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Nakasuji, M., Phuksuwan, O., Yamasaki, Y.: On Schur multiple zeta functions: a combinatoric generalization of multiple zeta functions (2017). Preprint arXiv:1704.08511
  11. 11.
    Yee, A.J.: A new shuffle convolution for multiple zeta values. J. Algebraic Comb. 21(1), 55–69 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Graduate School of Science and EngineeringEhime UniversityEhimeJapan

Personalised recommendations