Mathematische Zeitschrift

, Volume 288, Issue 3–4, pp 915–933 | Cite as

On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers



In this article we analyze the global diffeomorphism property of polynomial maps \(F:\mathbb {R}^n\rightarrow \mathbb {R}^n\) by studying the properties of the Newton polytopes at infinity corresponding to the sum of squares polynomials \(\Vert F\Vert _2^2\). This allows us to identify a class of polynomial maps F for which their global diffeomorphism property on \(\mathbb {R}^n\) is equivalent to their Jacobian determinant \(\det JF\) vanishing nowhere on \(\mathbb {R}^n\). In other words, we identify a class of polynomial maps for which the Real Jacobian Conjecture, which was proven to be false in general, still holds.


Newton polytope Coercivity Global invertibility Real Jacobian Conjecture Circuit number 

Mathematics Subject Classification

14P99 26B10 26C05 52B20 



The authors are grateful to Yu. Nesterov and V. Shikhman for pointing out the importance of the invariance of coercivity under linear transformations, and for other fruitful discussions on the subject of this article. The authors also wish to thank an anonymous referee for substantial remarks which significantly improved the quality of this manuscript.


  1. 1.
    Avis, D., Fukuda, K.: A Pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 8, 295–313 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25(3), 1542–1570 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Banach, S., Mazur, B.: Über mehrdeutige stetige Abbildungen. Stud. Math. 5, 174–178 (1934)CrossRefMATHGoogle Scholar
  4. 4.
    Bass, H., Connell, E., Wright, D.: The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. 7, 287–330 (1982)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Białynicki-Birula, A., Rosenlicht, M.: Injective morphisms of real algebraic varieties. Proc. AMS 13, 200–203 (1962)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bivià-Ausina, C.: Injectivity of real polynomial maps and Lojasiewicz exponents at infinity. Math. Z. 257(4), 745–767 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discret. Comput. Geom. 20, 333–357 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Caccioppoli, R.: Sugli elements uniti delle transformazioni funzionali. Rc. Mat. Padova 3, 1–15 (1932)MATHGoogle Scholar
  9. 9.
    Chen, Y., Dias, L.R.G., Takeuchi, K., Tibăr, M.: Invertible polynomial mappings via Newton non-degeneracy. Ann. l’Inst. Fourier 54(5), 1807–1822 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chichilnisky, G.: Topology and invertible maps. Adv. Appl. Math. 21, 113–123 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    De Angelis, V., Tuncel, S.: Handelman’s theorem on polynomials with positive multiples. In: Codes, Systems, and Graphical Models. The IMA Volumes in Mathematics and Its Applications, vol. 123, pp. 439–445 (2001)Google Scholar
  12. 12.
    De Marco, G., Gorni, G., Zampieri, G.: Global inversion of functions: an introduction. Nonlinear Differ. Equ. Appl. 1, 229–248 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dinh, S.T., Ha, H.V., Pham, T.S., Thao, N.T.: Global Lojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410(2), 541–560 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Drużkowski, L.: The Jacobian Conjecture: survey of some results. Banach Cent. Publ. 31(1), 163–171 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fukui, T., Kurdyka, K., Paunescu, L.: Tame Nonsmooth inverse mapping theorems. SIAM J. Optim. 20(3), 1573–1590 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gale, D., Nikaidô, H.: The Jacobian matrix and global univalence of mappings. Math. Ann. 159(2), 81–93 (1965)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gao, S.: Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237, 501–520 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications. Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton (2005)Google Scholar
  19. 19.
    Gordon, W.B.: On the diffeomorphisms of Euclidean space. Am. Math. Mon. 79(7), 755–759 (1972)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hadamard, J.S.: Sur les transformations planes. Comptes Rendus de l’Acadmie des Sciences Paris 142, 74 (1906)MATHGoogle Scholar
  21. 21.
    Hadamard, J.S.: Sur les transformations ponctuelles. Bulletin de la Socit Mathmatique de France 34, 71–84 (1906)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hadamard, J.S.: Sur les correspondances ponctuelles. Oeuvres, pp. 349–363. Editions du Centre Nationale de la Recherche Scientifique, Paris (1968)Google Scholar
  23. 23.
    Iliman, S., de Wolff, T.: Amoebas, nonnegative polynomials and sums of squares supported on circuits. Res. Math. Sci. 3(1), 1–35 (2016)Google Scholar
  24. 24.
    Kaveh, K., Khovanskii, A.G.: Algebraic equations and convex bodies. In: Itenberg, I., Jöricke, B., Passare, M. (eds.) Perspectives in Analysis, Geometry, and Topology, on the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics, vol. 296, pp. 263–282. Birkhäuser Verlag Ag (2012)Google Scholar
  25. 25.
    Keller, O.: Ganze Cremona-Transformationen. Monatsh. Math. Phys. 47, 299–306 (1939)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Khovanskii, A., Esterov, A.: Elimination theory and Newton polytopes. Funct. Anal. Other Math. 2, 45–71 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Krantz, S.G.: Convex Analysis. CRC Press, Taylor & Francis Group, Boca Raton (2015)MATHGoogle Scholar
  29. 29.
    Krantz, S.G., Parks, H.R.: The Implicit Function Theorem, History, Theory, and Applications. Birkhäuser Basel, New York (2003). doi: 10.1007/978-1-4612-0059-8
  30. 30.
    Kurdyka, K., Rusek, K.: Polynomial-rational bijections of \(\mathbb{R}^n\). Proc. Am. Math. Soc. 102(4), 804–808 (1988)MathSciNetMATHGoogle Scholar
  31. 31.
    Kurdyka, K., Rusek, K.: Surjectivity of certain injective semialgebraic transformations of \(\mathbb{R}^n\). Math. Z. 200, 141–148 (1988)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kushnirenko, A.G.: Newton polytopes and the Bézout theorem. Funct. Anal. Appl. (translated from Russian) 10, 233–235 (1977)CrossRefMATHGoogle Scholar
  33. 33.
    Levy, M.P.: Sur les fonctions de ligne implicites. Bulletin de la Société Mathématique de France 48, 13–27 (1920)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Mas-Colell, A.: Homeomorphisms of compact, convex sets and the Jacobian matrix. SIAM J. Math. Anal. 10(6), 1105–1109 (1979)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Moh, T.T.: On the Jacobian conjecture and the configurations of roots. Journal für die reine und angewandte Mathematik 340, 140–212 (1983)MathSciNetMATHGoogle Scholar
  36. 36.
    Netzer, T.: Stability of quadratic modules. Manuscr. Math. 129, 251–271 (2009)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Palais, R.S.: Natural operations on differential forms. Trans. Am. Math. Soc. 92, 121–141 (1959)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Pham, T.S.: On the topology of the Newton boundary at infinity. J. Math. Soc. Jpn. 60, 1065–1081 (2008)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Pinchuk, S.: A counterexample to the real Jacobian Conjecture. Math. Z. 217, 1–4 (1994)Google Scholar
  40. 40.
    Plastock, R.: Homeomorphisms between Banach spaces. Trans. Am. Math. Soc. 200, 169–183 (1974)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Rabier, P.J.: On global diffeomorphisms of Euclidean space. Nonlinear Anal. Theory Methods Appl. 21(12), 925–947 (1993)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Rabier, P.J.: Ehresmann fibrations and Palais–Smale conditions for morphisms of Finsler manifolds. Ann. Math. 146, 647–691 (1997)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45, 363–374 (1978)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Ruzhansky, M., Sugimoto, M.: On global inversion of homogenous maps. Bull. Math. Sci. 5(1), 13–18 (2015)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Samuelson, P.A.: Prices of factors and goods in general equilibrium. Rev. Econ. Stud. 21(1), 1–20 (1953)CrossRefGoogle Scholar
  46. 46.
    Sturmfels, B.: Polynomial equations and convex polytopes. Am. Math. Mon. 105, 907–922 (1998)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Thang, N.T.: Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons. Kodai Math. J. 36, 77–90 (2013)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    van den Essen, A.: To believe or not to believe: the Jacobian conjecture. Rendiconti del Seminario Matematico Universitè Politecnico di Torino 55(4), 283–290 (1997)MathSciNetMATHGoogle Scholar
  49. 49.
    van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics, vol. 190. Birkhäuser, Basel (2000)Google Scholar
  50. 50.
    Wang, S.: Jacobian criterion for separability. J. Algebra 21, 453–494 (1980)Google Scholar
  51. 51.
    Wright, D.: The Jacobian Conjecture: Ideal Membership Questions and Recent Advances. Contemporary Mathematics, vol. 369 (2005)Google Scholar
  52. 52.
    Yagzhev, A.V.: On Keller’s problem. Sib. Math. J. 21, 747–754 (1980)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Institute for MathematicsGoethe-UniversityFrankfurt am MainGermany
  2. 2.Institute of Operations ResearchKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations