Mathematische Zeitschrift

, Volume 286, Issue 1–2, pp 603–655 | Cite as

A general approach to Heisenberg categorification via wreath product algebras

  • Daniele Rosso
  • Alistair SavageEmail author


We associate a monoidal category \({\mathcal {H}}_B\), defined in terms of planar diagrams, to any graded Frobenius superalgebra B. This category acts naturally on modules over the wreath product algebras associated to B. To B we also associate a (quantum) lattice Heisenberg algebra \({\mathfrak {h}}_B\). We show that, provided B is not concentrated in degree zero, the Grothendieck group of \({\mathcal {H}}_B\) is isomorphic, as an algebra, to \({\mathfrak {h}}_B\). For specific choices of Frobenius algebra B, we recover existing results, including those of Khovanov and Cautis–Licata. We also prove that certain morphism spaces in the category \({\mathcal {H}}_B\) contain generalizations of the degenerate affine Hecke algebra. Specializing B, this proves an open conjecture of Cautis–Licata.


Categorification Lattice Heisenberg algebra Tower of algebras Graded Frobenius superalgebra Fock space 

Mathematics Subject Classification

Primary 18D10 Secondary 17B10 17B65 19A22 



The authors would like to thank A. Licata and S. Cautis for sharing their preliminary notes, based on conversations with M. Khovanov, regarding Heisenberg categorification depending on symmetric Frobenius algebras. They would also like to thank J. Brundan, A. Licata, A. Ram, J. Sussan, and O. Yacobi for useful conversations.


  1. 1.
    Cautis, S., Licata, A.: Vertex operators and 2-representations of quantum affine algebras. arxiv:1112.6189v2
  2. 2.
    Cautis, S., Licata, A.: Heisenberg categorification and Hilbert schemes. Duke Math. J. 161(13), 2469–2547 (2012). doi: 10.1215/00127094-1812726 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cautis, S., Lauda, A., Licata, A., Sussan, J.: \(W\)-algebras from Heisenberg categories. arxiv:1501.00589v1
  4. 4.
    Cautis, S., Licata, A., Sussan, J.: Braid group actions via categorified Heisenberg complexes. Compos. Math. 150(1), 105–142 (2014). doi: 10.1112/S0010437X13007367 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cautis, S., Sussan, J.: On a categorical Boson–Fermion correspondence. Commun. Math. Phys. 336(2), 649–669 (2015). doi: 10.1007/s00220-015-2310-3 CrossRefzbMATHGoogle Scholar
  6. 6.
    Frenkel, I.B., Jing, N., Wang, W.: Vertex representations via finite groups and the McKay correspondence. Int. Math. Res. Not. 4, 195–222 (2000). doi: 10.1155/S107379280000012X MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Frenkel, I.B., Jing, N., Wang, W.: Twisted vertex representations via spin groups and the McKay correspondence. Duke Math. J. 111(1), 51–96 (2002). doi: 10.1215/S0012-7094-02-11112-0 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Geissinger, L.: Hopf algebras of symmetric functions and class functions. In: Combinatoire et représentation du groupe symétrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976). Lecture Notes in Mathematics, Vol. 579, pp. 168–181. Springer, Berlin (1977)Google Scholar
  9. 9.
    Huerfano, R.S., Khovanov, M.: A category for the adjoint representation. J. Algebra 246(2), 514–542 (2001). doi: 10.1006/jabr.2001.8962 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hill, D., Sussan, J.: A categorification of twisted Heisenberg algebras. arxiv:1501.00283v1
  11. 11.
    Józefiak, T.: Characters of projective representations of symmetric groups. Expos. Math. 7(3), 193–247 (1989)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jing, N., Wang, W.: Twisted vertex representations and spin characters. Math. Z. 239(4), 715–746 (2002). doi: 10.1007/s002090100340 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Khovanov, M.: Categorifications from planar diagrammatics. Jpn. J. Math. 5(2), 153–181 (2010). doi: 10.1007/s11537-010-0925-x MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khovanov, M.: Heisenberg algebra and a graphical calculus. Fund. Math. 225(1), 169–210 (2014). doi: 10.4064/fm225-1-8 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kleshchev, A.: Linear and projective representations of symmetric groups, volume 163 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2005). doi: 10.1017/CBO9780511542800
  16. 16.
    Krug, A.: Symmetric quotient stacks and Heisenberg actions. arxiv:1501.07253v1
  17. 17.
    Licata, A., Savage, A.: A survey of Heisenberg categorification via graphical calculus. Bull. Inst. Math. Acad. Sin. (N.S.), 7(2), 291–321 (2012).
  18. 18.
    Licata, A., Savage, A.: Hecke algebras, finite general linear groups, and Heisenberg categorification. Quantum Topol. 4(2), 125–185 (2013). doi: 10.4171/QT/37 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Macdonald, I.G.: Polynomial functors and wreath products. J. Pure Appl. Algebra 18(2), 173–204 (1980). doi: 10.1016/0022-4049(80)90128-0 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, With contributions by A. Oxford Science Publications, Zelevinsky (1995)Google Scholar
  21. 21.
    Pike, J., Savage, A.: Twisted Frobenius extensions of graded superrings. Algebr. Represent. Theory 19(1), 113–133 (2016). doi: 10.1007/s10468-015-9565-4 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ram, A., Ramagge, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. In A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pages 428–466. Birkhäuser, Basel (2003)Google Scholar
  23. 23.
    Rosso, D., Savage, A.: Towers of graded superalgebras categorify the twisted Heisenberg double. J. Pure Appl. Algebra 219(11), 5040–5067 (2015). doi: 10.1016/j.jpaa.2015.03.016 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rosso, D., Savage, A.: Twisted Heisenberg doubles. Comm. Math. Phys. 337(3), 1053–1076 (2015). doi: 10.1007/s00220-015-2330-z MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sergeev, A.: The Howe duality and the projective representations of symmetric groups. Represent. Theory 3, 416–434 (1999). doi: 10.1090/S1088-4165-99-00085-0. (Electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Savage, A., Yacobi, O.: Categorification and Heisenberg doubles arising from towers of algebras. J. Combin. Theory Ser. A 129, 19–56 (2015). doi: 10.1016/j.jcta.2014.09.002 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Webster, B.: Knot invariants and higher representation theory. arxiv:1309.3796v2
  28. 28.
    Wan, J., Wang, W.: Lectures on spin representation theory of symmetric groups. Bull. Inst. Math. Acad. Sin. (N.S.), 7(1), 91–164 (2012).

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California RiversideRiversideUSA
  2. 2.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada

Personalised recommendations