Mathematische Zeitschrift

, Volume 284, Issue 3–4, pp 877–900 | Cite as

Spectral analysis of the diffusion operator with random jumps from the boundary

Article
  • 112 Downloads

Abstract

Using an operator-theoretic framework in a Hilbert-space setting, we perform a detailed spectral analysis of the one-dimensional Laplacian in a bounded interval, subject to specific non-self-adjoint connected boundary conditions modelling a random jump from the boundary to a point inside the interval. In accordance with previous works, we find that all the eigenvalues are real. As the new results, we derive and analyse the adjoint operator, determine the geometric and algebraic multiplicities of the eigenvalues, write down formulae for the eigenfunctions together with the generalised eigenfunctions and study their basis properties. It turns out that the latter heavily depend on whether the distance of the interior point to the centre of the interval divided by the length of the interval is rational or irrational. Finally, we find a closed formula for the metric operator that provides a similarity transform of the problem to a self-adjoint operator.

Notes

Acknowledgments

The research was partially supported by the project RVO61389005 and the GACR grant No. 14-06818S.

References

  1. 1.
    Ben-Ari, I.: Coupling for drifted Brownian motion on an interval with redistribution from the boundary. Electron. Commun. Probab. 19(16), 1–11 (2014)MathSciNetMATHGoogle Scholar
  2. 2.
    Ben-Ari, I., Panzo, H., Tripp, E.: Efficient coupling for random walk with redistribution. arXiv:1410.8234 [math.PR] (2014)
  3. 3.
    Ben-Ari, I., Pinsky, R.G.: Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure. J. Funct. Anal. 251(1), 122–140 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ben-Ari, I., Pinsky, R.G.: Ergodic behavior of diffusions with random jumps from the boundary. Stoch. Process. Appl. 119, 864–881 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Davies, E.B.: Linear Operators and Their Spectra. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Dieudonné, J.: Quasi–Hermitian operators. In: Proceedings of the International Symposium on Linear Spaces (Jerusalem 1960), Jerusalem Academic Press, Pergamon, Oxford, 1961, pp. 115–123Google Scholar
  7. 7.
    Gohberg, I.C., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, vol. 1. Birkhäuser, Basel (1990)CrossRefMATHGoogle Scholar
  8. 8.
    Grigorescu, I., Kang, M.: Brownian motion on the figure eight. J. Theoret. Probab. 15, 817–844 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hussein, A., Krejčiřík, D., Siegl, P.: Non-self-adjoint graphs. Trans. Am. Math. Soc. 367, 2921–2957 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)CrossRefMATHGoogle Scholar
  11. 11.
    Kolb, M., Wübker, A.: On the spectral gap of Brownian motion with jump boundary. Electron. J. Probab. 16(43), 1214–1237 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kolb, M., Wübker, A.: Spectral analysis of diffusions with jump boundary. J. Funct. Anal. 261, 1992–2012 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Krejčiřík, D., Siegl, P.: Elements of spectral theory without the spectral theorem. In: Bagarello, F., Gazeau, J.-P., Szafraniec, F.H., Znojil, M. (eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, p. 432. Wiley, Hoboken (2015)Google Scholar
  14. 14.
    Krejčiřík, D., Siegl, P., Tater, M., Viola, J.: Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 56, 103513 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Krejčiřík, D., Siegl, P., Železný, J.: On the similarity of Sturm–Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators. Complex Anal. Oper. Theory 8, 255–281 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Leung, Y.J., Li, W.V.: Spectral analysis of Brownian motion with jump boundary. Proc. Am. Math. Soc. 136, 4427–4436 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schmidt, W.M.: Diophantine Approximation. Springer, Berlin Heidelberg (1980)MATHGoogle Scholar
  18. 18.
    Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversität PaderbornPaderbornGermany
  2. 2.Department of Theoretical PhysicsNuclear Physics Institute ASCRŘežCzech Republic

Personalised recommendations