Mathematische Zeitschrift

, Volume 283, Issue 1–2, pp 197–242 | Cite as

On the existence of infinitely many invariant Reeb orbits

  • Will J. MerryEmail author
  • Kathrin Naef


In this article we extend results of Grove and Tanaka (Bull Am Math Soc 82:497–498, 1976, Acta Math 140:33–48, 1978) and Tanaka (J Differ Geom 17:171–184, 1982) on the existence of isometry-invariant geodesics to the setting of Reeb flows and strict contactomorphisms. Specifically, we prove that if M is a closed connected manifold with the property that the Betti numbers of the free loop space \( \Lambda (M)\) are asymptotically unbounded then for every fibrewise star-shaped hypersurface \(\Sigma \subset T^*M\) and every strict contactomorphism \( \varphi :\Sigma \rightarrow \Sigma \) which is contact-isotopic to the identity, there are infinitely many invariant Reeb orbits.



We are very grateful to Marco Mazzucchelli for explaining to us why studying strict contactomorphisms is interesting in this setting, and for numerous helpful discussions on generating functions, and to Viktor Ginzburg for his many detailed and useful comments, and in particular for suggesting Theorem 1.7 to us. The first author thanks Alberto Abbondandolo for many discussions about the \(L^{\infty }\)-estimates in Sect. 6.


  1. 1.
    Albers, P., Frauenfelder, U.: Leaf-wise intersections and Rabinowitz Floer homology. J. Topol. Anal. 2(1), 77–98 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albers, P., Frauenfelder, U.: Spectral Invariants in Rabinowitz Floer homology and Global Hamiltonian perturbations. J. Mod. Dyn. 4, 329–357 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albers, P., Frauenfelder, U.: Infinitely many leaf-wise intersection points on cotangent bundles. In: Global Differential Geometry, Proceedings in Mathematics, vol. 17, Springer, pp. 437–461 (2012)Google Scholar
  4. 4.
    Albers, P., Frauenfelder, U.: Rabinowitz Floer homology: A Survey. In: Global Differential Geometry, vol. 17, Proceedings in Mathematics, no. 3, Springer, pp. 437–461 (2012)Google Scholar
  5. 5.
    Albers, P., Merry, W.J.: Translated points and Rabinowitz Floer homology. J. Fixed Point Theory Appl. 13(1), 201–214 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Abbondandolo, A., Merry, W.J.: Floer homology on the time-energy extended phase space. arXiv:1411.4669 (2014)
  7. 7.
    Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59, 254–316 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Abbondandolo, A., Schwarz, M.: Estimates and computations in Rabinowitz-Floer homology. J. Topol. Anal. 1(4), 307–405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bae, Y., Frauenfelder, U.: Continuation homomorphism in Rabinowitz Floer homology for symplectic deformations. Math. Proc. Camb. Philos. Soc. 151, 471–502 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Biran, P., Polterovich, L., Salamon, D.: Propagation in Hamiltonian dynamics and relative symplectic homology. Duke Math. J. 119, 65–118 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cieliebak, K., Frauenfelder, U.: A Floer homology for exact contact embeddings. Pac. J. Math. 239(2), 216–251 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cieliebak, K., Floer, A., Hofer, H., Wysocki, K.: Applications of symplectic homology II: stability of the action spectrum. Math. Z. 223, 27–45 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cieliebak, K., Frauenfelder, U., Oancea, A.: Rabinowitz Floer homology and symplectic homology. Ann. Inst. Fourier 43(6), 957–1015 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mañé’s critical values. Geom. Topol. 14, 1765–1870 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ginzburg, V., Gürel, B.: Local Floer homology and the action gap. J. Symplectic Geom. 8(3), 323–327 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ginzburg, V.: On closed trajectories of a charge in a magnetic field. An application of symplectic geometry, Contact and symplectic geometry (Cambridge, 1994) (C. B. Thomas, ed.), Publications of the Newton Institute, vol. 8, , pp. 131–148. Cambridge University Press (1996)Google Scholar
  17. 17.
    Ginzburg, V.: The Conley conjecture. Ann. Math. 172(2), 1127–1180 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gromoll, D., Meyer, W.: Periodic geodesics on compact riemannian manifolds. J. Differ. Geom. 3, 493–510 (1969)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Grove, K.: Condition \(({C})\) for the energy integral on certain path spaces and applications to the theory of geodesics. J. Differ. Geom. 8, 207–223 (1973)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Grove, K.: Isometry-invariant geodesics. Topology 13, 281–292 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gromov, M.: Homotopical effects of dilatations. J. Differ. Geom. 13, 303–310 (1978)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Grove, K., Tanaka, M.: On the number of invariant closed geodesics. Bull. Am. Math. Soc. 82, 497–498 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Grove, K., Tanaka, M.: On the number of invariant closed geodesics. Acta Math. 140, 33–48 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hryniewicz, U., Macarini, L.: Local contact homology and applications. arXiv:1202.3122 (2012)
  25. 25.
    Lyusternik, L.A., Fet, A.I.: Variational problems on closed manifolds. Doklady Akad. Nauk SSSR (N.S.) 81, 17–18 (1951)MathSciNetGoogle Scholar
  26. 26.
    Lu, G.: Splitting lemmas for the Finsler energy functional on the space of \({H}^1\)-curves. arXiv:1411.3209 (2014)
  27. 27.
    Maderna, E.: Invariance of global solutions of the Hamilton-Jacobi equation. Bull. Soc. Math. Fr. 130(4), 493–506 (2002)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mazzucchelli, M.: Isometry-invariant geodesics and the fundamental group, Preprint (2014)Google Scholar
  29. 29.
    Mazzucchelli, M.: On the multiplicity of isometry-invariant geodesics on product manifolds. Alg. Geom. Topol. 14, 135–156 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    McLean, M.: Computatability and the growth rate of symplectic homology. arXiv:1109.4466 (2011)
  31. 31.
    McLean, M.: Local Floer homology and infinitely many simple Reeb orbits. Alg. Geom. Topol. 12(4), 1901–1923 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Merry, W.J.: On the Rabinowitz Floer homology of twisted cotangent bundles. Calc. Var. Partial Differ. Equ. 42(3–4), 355–404 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Moser, J.: A fixed point theorem in symplectic geometry. Acta Math. 141(1–2), 17–34 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Paternain, G.P., Paternain, M.: Critical values of autonomous Lagrangians. Comment. Math. Helv. 72, 481–499 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sandon, S.: On iterated translated points for contactomorphisms of \(\mathbb{R}^{2n+1}\), Internat. J. Math. 23, no. 2 (2012)Google Scholar
  36. 36.
    Salamon, D., Weber, J.: Floer homology and the heat flow. GAFA 16, 1050–1138 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45, 1303–1360 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tanaka, M.: On the existence of infinitely many isometry-invariant geodesics. J. Differ. Geom. 17, 171–184 (1982)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Viterbo, C.: Functors and computations in Floer homology with applications: Part II. Preprint (1996)Google Scholar
  40. 40.
    Weigel, P.: Orderable contact structures on Liouville-fillable contact manifolds. arXiv:1304.3662 (2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsETH ZürichZürichSwitzerland

Personalised recommendations