Advertisement

Mathematische Zeitschrift

, Volume 282, Issue 3–4, pp 955–972 | Cite as

On the \(A_{\infty }\) conditions for general bases

  • Javier DuoandikoetxeaEmail author
  • Francisco J. Martín-Reyes
  • Sheldy Ombrosi
Article

Abstract

We discuss several characterizations of the \(A_\infty \) class of weights in the setting of general bases. Although they are equivalent for the usual Muckenhoupt weights, we show that they can give rise to different classes of weights for other bases. We also obtain new characterizations for the usual \(A_\infty \) weights.

Keywords

Weights Muckenhoupt bases \(A_p\) Classes 

Mathematics Subject Classification

Primary 42B25 

Notes

Acknowledgments

We would like to thank David Cruz-Uribe for calling to our attention reference [31] and the characterizations with the medians appearing in it. We thank also Amiran Gogatishvili for pointing out his paper [16] and Kabe Moen for indicating the recent characterization of [19].

References

  1. 1.
    Bateman, M.: Kakeya sets and directional maximal operators in the plane. Duke Math. J. 147(1), 55–77 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bekollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de \({\bf C}^{n}\). Studia Math. 71(3), 305–323 (1981/82)Google Scholar
  3. 3.
    Bekollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Sér. A-B 286(18), A775–A778 (1978)zbMATHGoogle Scholar
  4. 4.
    Beznosova, O., Reznikov, A.: Sharp estimates involving \(A_\infty \) constants, and their applications to PDE. Algebra i Analiz, 26(1), 40–67 (2014). English transl., St. Petersburg Math. J. 26(1), 27–47 (2015)Google Scholar
  5. 5.
    Beznosova, O., Reznikov, A.: Equivalent definitions of dyadic Muckenhoupt and reverse Hölder classes in terms of Carleson sequences, weak classes, and comparability of dyadic \(L\log L\) and \(A_\infty \) constants. Rev. Mat. Iberoam. 30(4), 1191–1236 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coifman, R.R.: Distribution function inequalities for singular integrals. Proc. Nat. Acad. Sci. U.S.A. 69, 2838–2839 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia. Operator Theory: Advances and Applications, vol. 215. Birkhäuser/Springer Basel AG, Basel (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)zbMATHGoogle Scholar
  10. 10.
    Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: Calderón weights as Muckenhoupt weights. Indiana Univ. Math. J. 62(3), 891–910 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dyn’kin, E.M., Osilenker, B.P.: Weighted estimates for singular integrals and their applications. In: Mathematical analysis, vol. 21, Itogi Nauki i Tekhniki, pp. 42–129. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1983) (Russian)Google Scholar
  12. 12.
    Fujii, N.: Weighted bounded mean oscillation and singular integrals. Math. Jpn. 22(5), 529–534 (1977/78)Google Scholar
  13. 13.
    García-Cuerva, J., Rubio de Francia, J.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    Garnett, J.B.: Bounded Analytic Functions. Pure and Applied Mathematics, vol. 96. Academic Press Inc., New York (1981)zbMATHGoogle Scholar
  15. 15.
    Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gogatishvili, A., Pick, L.: Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform. Czechoslov. Math. J. 43(3), 547–566 (1993)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gundy, R.F., Wheeden, R.L.: Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series. Studia Math. 49, 107–124 (1973/74)Google Scholar
  19. 19.
    Hagelstein, P., Luque, T., Parissis, I.: Tauberian conditions, Muckenhoupt weights, and differentiation properties of weighted bases. Trans. Am. Math. Soc. 367(11), 7999–8032 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hruščev, S.V.: A description of weights satisfying the \(A_{\infty }\) condition of Muckenhoupt. Proc. Am. Math. Soc. 90(2), 253–257 (1984)Google Scholar
  21. 21.
    Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hytönen, T., Pérez, C., Rela, E.: Sharp Reverse Hölder property for \(A_\infty \) weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883–3899 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kerman, R.A., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function. Studia Math. 71(3), 277–284 (1981/82)Google Scholar
  24. 24.
    Lanzani, L., Stein, E.M.: Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Muckenhoupt, B.: The equivalence of two conditions for weight functions. Studia Math. 49 101–106 (1973/74)Google Scholar
  26. 26.
    Orobitg, J., Pérez, C.: \(A_p\) weights for nondoubling measures in \({{\bf R}}^n\) and applications. Trans. Am. Math. Soc. 354(5), 2013–2033 (2002). (electronic)CrossRefzbMATHGoogle Scholar
  27. 27.
    Pérez, C.: Some topics from Calderón-Zygmund theory related to Poincaré-Sobolev inequalities, fractional integrals and singular integral operators. In: Function spaces, Nonlinear Analysis and Applications (Spring Lectures in Analysis, Paseky nad Jizerou, 1999), pp. 31–94. Charles University and Academy of Sciences, Prague (1999)Google Scholar
  28. 28.
    Recchi, J.: Mixed \(A_1-A_\infty \) bounds for fractional integrals. J. Math. Anal. Appl. 403(1), 283–296 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Stein, E.M.: Note on the class \(L\) log \(L\). Studia Math. 32, 305–310 (1969)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  31. 31.
    Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)zbMATHGoogle Scholar
  32. 32.
    Strömberg, J.-O., Wheeden, R.L.: Fractional integrals on weighted \(H^p\) and \(L^p\) spaces. Trans. Am. Math. Soc. 287(1), 293–321 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123. Academic Press Inc., Orlando (1986)zbMATHGoogle Scholar
  34. 34.
    Wilson, J.M.: Weighted inequalities for the dyadic square function without dyadic \(A_\infty \). Duke Math. J. 55(1), 19–50 (1987). doi: 10.1215/S0012-7094-87-05502-5 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Javier Duoandikoetxea
    • 1
    Email author
  • Francisco J. Martín-Reyes
    • 2
  • Sheldy Ombrosi
    • 3
  1. 1.Departamento de MatemáticasUniversidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU)BilbaoSpain
  2. 2.Departamento de Análisis Matemático, Facultad de CienciasUniversidad de MálagaMálagaSpain
  3. 3.Departamento de MatemáticaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations