Mathematische Zeitschrift

, Volume 282, Issue 1–2, pp 341–369 | Cite as

Zappa–Szép products of Garside monoids

Article

Abstract

A monoid K is the internal Zappa–Szép product of two submonoids, if every element of K admits a unique factorisation as the product of one element of each of the submonoids in a given order. This definition yields actions of the submonoids on each other, which we show to be structure preserving. We prove that K is a Garside monoid if and only if both of the submonoids are Garside monoids. In this case, these factors are parabolic submonoids of K and the Garside structure of K can be described in terms of the Garside structures of the factors. We give explicit isomorphisms between the lattice structures of K and the product of the lattice structures on the factors that respect the Garside normal forms. In particular, we obtain explicit natural bijections between the normal form language of K and the product of the normal form languages of its factors.

Mathematics Subject Classification

Primary 20F36 Secondary 20M13 06F05 

References

  1. 1.
    Agore, A.L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12(2–5), 481–488 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Agore, A.L., Militaru, G.: Extending structures II: the quantum version. J. Algebra 336, 321–341 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brin, M.G.: On the Zappa-Szép product. Commun. Algebra 33(2), 393–424 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brin, M.G.: The algebra of strand splitting. I. A braided version of Thompson’s group \(V\). J. Group Theory 10(6), 757–788 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brownlowe, N., Ramagge, J., Robertson, D., Whittaker, M.F.: Zappa-Szép products of semigroups and their \(C^\ast \)-algebras. J. Funct. Anal. 266(6), 3937–3967 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Casadio, G.: Costruzione di gruppi come prodotto di sottogruppi permutabili. Univ. Roma e Ist. Naz. Alta Mat. Rend. Mat. e Appl. V 2, 348–360 (1941)MathSciNetMATHGoogle Scholar
  7. 7.
    Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Jean, M.: Foundations of Garside Theory. EMS Tracts in Mathematics. European Mathematical Society. http://www.math.unicaen.fr/~garside (2014)
  8. 8.
    Dehornoy, P.: Groupes de Garside. Ann. Sci. École Norm. Sup. IV 35(2), 267–306 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. Lond. Math. Soc. III 79(3), 569–604 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Godelle, E.: Parabolic subgroups of Garside groups. J. Algebra 317(1), 1–16 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Godelle, E.: Parabolic subgroups of Garside groups II: ribbons. J. Pure Appl. Algebra 214(11), 2044–2062 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kunze, M.: Zappa products. Acta Math. Hungar. 41(3–4), 225–239 (1983)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Picantin, M.: Petits groupes gaussiens. PhD thesis, Université de Caen (2000)Google Scholar
  14. 14.
    Picantin, M.: The center of thin Gaussian groups. J. Algebra 245(1), 92–122 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rédei, L., Szép, J.: Die Verallgemeinerung der Theorie des Gruppenproduktes von Zappa–Casadio. Acta. Sci. Math. Szeged 16, 165–170 (1955)MathSciNetMATHGoogle Scholar
  16. 16.
    Szép, J.: On the structure of groups which can be represented as the product of two subgroups. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A), 57–61 (1950)Google Scholar
  17. 17.
    Szép, J.: Zur Theorie der endlichen einfachen Gruppen. Acta Sci. Math. Szeged 14, 111–112 (1951)MathSciNetMATHGoogle Scholar
  18. 18.
    Szép, J.: Sulle strutture fattorizzabili. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. VIII 32, 649–652 (1962)MathSciNetMATHGoogle Scholar
  19. 19.
    Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9(8), 841–882 (1981)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Zappa, G.: Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro. In: Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940, pp. 119–125. Edizioni Cremonense, Rome (1942)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre for Research in MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations