Mathematische Zeitschrift

, Volume 282, Issue 1–2, pp 177–202 | Cite as

The spinorial energy functional on surfaces

Article

Abstract

This is a companion paper to (Ammann et al. in A spinorial energy functional: critical points and gradient flow. arXiv:1207.3529, 2012) where we introduced the spinorial energy functional and studied its main properties in dimensions equal or greater than three. In this article we focus on the surface case. A salient feature here is the scale invariance of the functional which leads to a plenitude of critical points. Moreover, via the spinorial Weierstraß representation it relates to the Willmore energy of periodic immersions of surfaces into \(\mathbb {R}^3\).

References

  1. 1.
    Ammann, B., Dahl, M., Humbert, E.: Surgery and harmonic spinors. Adv. Math. 220, 523–539 (2009)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ammann, B., Weiss, H., Witt, F.: A spinorial energy functional: critical points and gradient flow. Preprint. arXiv:1207.3529 (2012)
  3. 3.
    Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4) 4, 47–62 (1971)MATHMathSciNetGoogle Scholar
  4. 4.
    Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Global Anal. Geom. 16, 573–596 (1998)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bär, C., Schmutz, P.: Harmonic spinors on Riemann surfaces. Ann. Global Anal. Geom. 10, 263–273 (1992)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, Teubner-Texte zur Mathematik, vol. 41. BSB B. G. Teubner, Leipzig (1981)Google Scholar
  7. 7.
    Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Texte zur Mathematik, vol. 124. B. G. Teubner, Stuttgart (1991)Google Scholar
  8. 8.
    Forster, O.: Lectures on Riemann Surfaces, Graduate Texts in Mathematics, vol. 81. Springer, Berlin (1981)CrossRefGoogle Scholar
  9. 9.
    Friedrich, T.: Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur. Colloq. Math. 48(1), 57–62 (1984)MATHMathSciNetGoogle Scholar
  10. 10.
    Friedrich, T.: On the conformal relation between twistors and Killing spinors. Suppl. Rend. Circ. Mat. Palermo II. Ser. 22, 59–75 (1990). https://eudml.org/doc/220945
  11. 11.
    Friedrich, T.: On the spinor representation of surfaces in Euclidean \(3\)-space. J. Geom. Phys. 28(1–2), 143–157 (1998)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Friedrich, T.: Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25. AMS, Providence (2000)Google Scholar
  13. 13.
    Ginoux, N., Grosjean, J.-F.: Almost harmonic spinors. C. R. Math. Acad. Sci. Paris 348, 811–814 (2010)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gunning, R.: Lectures on Riemann Surfaces. Princeton Univ. Press, New Jersey (1966)MATHGoogle Scholar
  15. 15.
    Habermann, K.: The twistor equation of Riemannian manifolds. J. Geom. Phys. 7, 469–488 (1990)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kenmotsu, K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245, 89–99 (1979)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kusner, R., Schmitt, N.: The spinor representation of minimal surfaces. Preprint. http://www.arxiv.org/abs/dg-ga/9512003 (1995)
  19. 19.
    Lawson, H., Michelsohn, M.-L.: Spin Geometry. Princeton Univ. Press, New Jersey (1989)MATHGoogle Scholar
  20. 20.
    Martens, H.: Varieties of special divisors on a curve. II. J. Reine Angew. Math. 233, 89–100 (1968)MATHMathSciNetGoogle Scholar
  21. 21.
    Milnor, J.: Remarks Concerning Spin Manifolds. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse). Princeton Univ. Press, New Jersey (1965)Google Scholar
  22. 22.
    Schmitt, N.: Minimal surface with planar embedded ends. Ph.D. dissertation, University of Amherst (1993)Google Scholar
  23. 23.
    Trautman, A.: Spinors and the Dirac operator on hypersurfaces. I. General theory. J. Math. Phys. 33, 4011–4019 (1992)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Trautman, A.: The Dirac operator on hypersurfaces. Acta Phys. Polonica B 26, 1283–1310 (1995)MATHMathSciNetGoogle Scholar
  25. 25.
    Traizet, M.: On the genus of triply periodic minimal surfaces. J. Differ. Geom. 79(2), 243–275 (2008)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Mathematisches Seminar der Universität KielKielGermany
  3. 3.Institut für Geometrie und Topologie der Universität StuttgartStuttgartGermany

Personalised recommendations