Mathematische Zeitschrift

, Volume 280, Issue 1–2, pp 355–366 | Cite as

Group localization and two problems of Levine

Article
  • 71 Downloads

Abstract

A. K. Bousfield’s \(H\mathbb {Z}\)-localization of groups inverts homologically two-connected homomorphisms of groups. J. P. Levine’s algebraic closure of groups inverts homomorphisms between finitely generated and finitely presented groups which are homologically two-connected and for which the image normally generates. We resolve an old problem concerning Bousfield \(H\mathbb {Z}\)-localization of groups, and answer two questions of Levine regarding algebraic closure of groups. In particular, we show that the kernel of the natural homomorphism from a group \(G\) to its Bousfield \(H\mathbb {Z}\)-localization is not always a \(G\)-perfect subgroup. In the case of algebraic closure of groups, we prove the analogous result that this kernel is not always a union of invisible subgroups.

References

  1. 1.
    Bousfield, A.K.: Homological localizations of spaces, groups, and \(\pi \)-modules. In: Localization in Group Theory and Homotopy Theory, and Related Topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974). Lecture Notes in Math., vol. 418, pp. 22–30. Springer, Berlin (1974)Google Scholar
  2. 2.
    Bousfield, A.K.: The localization of spaces with respect to homology. Topology 14, 133–150 (1975)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bousfield, A.K.: Homological localization towers for groups and \(\Pi \)-modules. Mem. American Mathematical Society, vol. 10(186), pp. vii+68 (1977)Google Scholar
  4. 4.
    Bridson, M.R., Reid, A.W.: Nilpotent completions of groups, Grothendieck pairs, and four problems of Baumslag (to appear in International Mathematics Research Notices). arXiv:1211.0493, 25 Jan, 2014
  5. 5.
    Cha, J.C.: Injectivity theorems and algebraic closures of groups with coefficients. Proc. Lond. Math. Soc. 96(1), 227–250 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Cha, J.C., Orr, K.E.: Hidden torsion, 3-manifolds, and homology cobordism. J. Topol. 6(2), 490–512 (2013)Google Scholar
  7. 7.
    Dwyer, W.G.: Homology, Massey products and maps between groups. J. Pure Appl. Algebra 6(2), 177–190 (1975)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Emmanouil, I., Mikhailov, R.: A limit approach to group homology. J. Algebra 319(4), 1450–1461 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Farjoun, E.D., Orr, K., Shelah, S.: Bousfield localization as an algebraic closure of groups. Isr. J. Math. 66(1–3), 143–153 (1989)CrossRefMATHGoogle Scholar
  10. 10.
    Gutiérrez, M.A.: Concordance and homotopy. I. Fundamental group. Pac. J. Math. 82(1), 75–91 (1979)CrossRefMATHGoogle Scholar
  11. 11.
    Heck, P.: Twisted homology cobordism invariants of knots in aspherical manifolds. Int. Math. Res. Not. IMRN 2012(15), 3434–3482 (2012)MATHMathSciNetGoogle Scholar
  12. 12.
    Le Dimet, J.-Y.: Cobordisme d’enlacements de disques. Mém. Soc. Math. France (N.S.), no. 32, ii+92 (1988)Google Scholar
  13. 13.
    Levine, J.P.: Link concordance. In: Algebra and Topology 1988 (Taej\(\breve{\rm o}\)n, 1988), pp 57–76. Korea Inst. Tech., Taej\(\breve{\rm o}\)n (1988)Google Scholar
  14. 14.
    Levine, J.P.: Link concordance and algebraic closure. II. Invent. Math. 96(3), 571–592 (1989)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Levine, J.P.: Link concordance and algebraic closure of groups. Comment. Math. Helv. 64(2), 236–255 (1989)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Levine, J.P.: Algebraic closure of groups. In: Combinatorial group theory (College Park, MD, 1988), Contemp. Math., vol. 109, pp. 99–105. American Mathematical Society, Providence, RI (1990)Google Scholar
  17. 17.
    Levine, J.P.: Link invariants via the eta invariant. Comment. Math. Helv. 69(1), 82–119 (1994)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Mikhailov, R., Passi, I.B.S.: Faithfulness of certain modules and residual nilpotence of groups. Int. J. Algebra Comput. 16(3), 525–539 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Rodríguez, J.L., Scevenels, D.: Homology equivalences inducing an epimorphism on the fundamental group and Quillen’s plus construction. Proc. Am. Math. Soc. 132(3), 891–898 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Sakasai, T.: Homology cylinders and the acyclic closure of a free group. Algebr. Geom. Topol. 6, 603–631 (2006). (electronic)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Stallings, J.: Homology and central series of groups. J. Algebra 2, 170–181 (1965)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Chebyshev LaboratorySt. Petersburg State UniversitySaint PetersburgRussia
  2. 2.St. Petersburg Department of Steklov Mathematical InstituteSaint PetersburgRussia
  3. 3.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations