Advertisement

Mathematische Zeitschrift

, Volume 279, Issue 3–4, pp 723–744 | Cite as

Left fibrations and homotopy colimits

  • Gijs Heuts
  • Ieke MoerdijkEmail author
Article

Abstract

For a small category \(\mathbf{A}\), we prove that the homotopy colimit functor from the category of simplicial diagrams on \(\mathbf{A}\) to the category of simplicial sets over the nerve of \(\mathbf{A}\) establishes a left Quillen equivalence between the projective (or Reedy) model structure on the former category and the covariant model structure on the latter. We compare this equivalence to a Quillen equivalence in the opposite direction previously established by Lurie. From our results we deduce that a categorical equivalence of simplicial sets induces a Quillen equivalence on the corresponding over-categories, equipped with the covariant model structures. Also, we show that a version of Quillen’s Theorem A for \(\infty \)-categories easily follows.

Keywords

Weak Equivalence Lift Property Simplicial Diagram Adjoint Pair Covariant Model Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger, C., Moerdijk, I.: On an extension of the notion of Reedy category. Math. Z. 269, 977–1004 (2011)Google Scholar
  2. 2.
    Cegarra, A.M., Remedios, J.: The relationship between the diagonal and the bar constructions on a bisimplicial set. Topol. Appl. 153(1), 21–51 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dror, E., Dwyer, W.G., Kan, D.M.: Equivariant maps which are self homotopy equivalences. Proc. Am. Math. Soc. 80(4), 670–672 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Dugger, D.: Replacing model categories with simplicial ones. Trans. Am. Math. Soc. 353(12), 5003–5027 (2001)Google Scholar
  5. 5.
    Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois-Marie, année 1960–61 (SGA 1), Revêtements étales et groupe fondamental. Institut des Hautes Etudes Scientifiques, Paris (1964)Google Scholar
  6. 6.
    Hirschhorn, P.S.: Model Categories and Their Localizations, vol. 99. AMS Bookstore (2009)Google Scholar
  7. 7.
    Hollander, S.: Diagrams indexed by Grothendieck constructions. Homol. Homotopy. Appl. 10(3), 193–221 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Illusie, L.: Complexe Cotangent et Deformations II. Springer, Berlin (1972)zbMATHGoogle Scholar
  9. 9.
    Jardine, J.F.: Fibred sites and stack cohomology. Math. Z. 254(4), 811–836 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Joyal, A.: The theory of quasi-categories I. preprint (2008)Google Scholar
  11. 11.
    Lurie, J.: Higher Topos Theory, 170th edn. Princeton University Press, Princeton (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud Universiteit NijmegenNijmegenThe Netherlands

Personalised recommendations