Mathematische Zeitschrift

, Volume 276, Issue 1–2, pp 469–503 | Cite as

Robust vanishing of all Lyapunov exponents for iterated function systems

  • Jairo BochiEmail author
  • Christian Bonatti
  • Lorenzo J. Díaz


Given any compact connected manifold \(M\), we describe \(C^2\)-open sets of iterated functions systems (IFS’s) admitting fully-supported ergodic measures whose Lyapunov exponents along \(M\) are all zero. Moreover, these measures are approximated by measures supported on periodic orbits. We also describe \(C^1\)-open sets of IFS’s admitting ergodic measures of positive entropy whose Lyapunov exponents along \(M\) are all zero. The proofs involve the construction of non-hyperbolic measures for the induced IFS’s on the flag manifold.



We are grateful to the referee for some corrections.


  1. 1.
    Abdenur, F., Bonatti, C., Crovisier, S.: Nonuniform hyperbolicity for \(C^1\)-generic diffeomorphisms. Israel J. Math. 183, 1–60 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arnold, L.: Random Dynamical Systems. Springer, Berlin (2003)Google Scholar
  3. 3.
    Arrow, K.J., Hahn, F.H.: General Competitive Analysis. Holden-Day, San Francisco (1971)Google Scholar
  4. 4.
    Baladi, V., Bonatti, C., Schmitt, B.: Abnormal escape rates from nonuniformly hyperbolic sets. Ergod. Theory Dyn. Syst. 19(5), 1111–1125 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge University Press, Cambridge (2007)Google Scholar
  6. 6.
    Bochi, J.: Genericity of zero Lyapunov exponents. Ergod. Theory Dyn. Syst. 22(6), 1667–1696 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bonatti, C., Díaz, L.J., Gorodetski, A.: Non-hyperbolic ergodic measures with large support. Nonlinearity 23(3), 687–705 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cao, Y., Luzzatto, S., Rios, I.: Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies. Discret. Contin. Dyn. Syst. 15(1), 61–71 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dai, X.: On the continuity of Liao qualitative functions of differential systems and applications. Commun. Contemp. Math. 7(6), 747–768 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Díaz, L.J., Gorodetski, A.S.: Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes. Ergod. Theory Dyn. Syst. 29(5), 1479–1513 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gorodetski, A.S., Ilyashenko, YuS, Kleptsyn, V.A., Nalsky, M.B.: Nonremovability of zero Lyapunov exponents. Funct. Anal. Appl. 39(1), 21–30 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hirsch, M.W.: Differential Topology. Corrected reprint of the 1976 original. Springer, Berlin (1994)Google Scholar
  13. 13.
    Homburg, A.J.: Robustly minimal iterated function systems on compact manifolds generated by two diffeomorphisms. Preprint (2011)Google Scholar
  14. 14.
    Johnson, R.A., Palmer, K.J., Sell, G.R.: Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18(1), 1–33 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Etudes Sci. Publ. Math. 51, 137–173 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kleptsyn, V.A., Nalsky, M.B.: Stability of the existence of nonhyperbolic measures for \(C^1\)-diffeomorphisms. Funct. Anal. Appl. 41(4), 271–283 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Koropecki, A., Nassiri, M.: Transitivity of generic semigroups of area-preserving surface diffeomorphisms. Math. Z. 266(3), 707–718 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mañé, R.: An ergodic closing lemma. Ann. Math. 116, 503–540 (1982)CrossRefzbMATHGoogle Scholar
  19. 19.
    Oseledets, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)Google Scholar
  20. 20.
    Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc. 190, 285–299 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Shub, M., Vasquez, A.T.: Some linearly induced Morse–Smale systems, the QR algorithm and the Toda lattice. In: Keen, L. (ed.) The Legacy of Sonya Kovalevskaya. Contemporary Mathematics, vol. 64, pp. 181–194 (1987)Google Scholar
  23. 23.
    Watkins, D.S.: Fundamentals of Matrix Computations, 2nd edn. Wiley, London (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jairo Bochi
    • 1
    Email author
  • Christian Bonatti
    • 2
  • Lorenzo J. Díaz
    • 1
  1. 1.Departamento de MatemáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Institut de Mathématiques de BourgogneDijonFrance

Personalised recommendations