Mathematische Zeitschrift

, Volume 276, Issue 1–2, pp 1–37 | Cite as

Solution of a \(q\)-difference Noether problem and the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\)

  • Vyacheslav Futorny
  • Jonas T. Hartwig


It is shown that the \(q\)-difference Noether problem for all classical Weyl groups has a positive solution, simultaneously generalizing well known results on multisymmetric functions of Mattuck (Proc Am Math Soc 19:764–765, 1968) and Miyata (Nagoya Math J 41:69–73, 1971) in the case \(q=1\), and \(q\)-deforming the noncommutative Noether problem for the symmetric group (Futorny et al. in Adv Math 223:773–796, 2010). It is also shown that the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\) (for a generic \(q\)) follows from the positive solution of the \(q\)-difference Noether problem for the Weyl group of type \(D_n\). The proof is based on the theory of Galois rings (Futorny and Ovsienko in J Algebra 324:598–630, 2010). From here we obtain a proof of the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\), and for a certain extension of \(\mathfrak sl _N\). Previously, the case of \(\mathfrak sl _N\) was shown by Fauquant-Millet (J Algebra 218:93–116, 1999) and by Alev and Dumas (J Algebra 170:229–265, 1994) (for \(N=2,3\)). Moreover, we give an explicit description of the skew fields of fractions for \(U_q(\mathfrak gl _N)\) and \(U_q^\mathrm{ext}(\mathfrak sl _N)\) which generalizes the results of Alev and Dumas (J Algebra 170:229–265, 1994).


Gelfand–Kirillov conjecture Quantum group  Noncommutative invariant theory 

Mathematics Subject Classification (2000)

16T20 (16K40 16W22 ) 



The authors are grateful to Michel Van den Bergh, Fedor Malikov, Eugene Mukhin and Alan Weinstein for encouraging discussions.


  1. 1.
    Alev, J., Dumas, F.: Sur le corps des fractiones de certaines algebres quantiques. J. Algebra 170, 229–265 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alev, J., Dumas, F.: Opérateurs différentiels invariants et problème de Noether, Studies in Lie theory, 2150, Progr. Math., 243, Birkhäuser Boston, Boston, MA (2006)Google Scholar
  3. 3.
    Alev, J., Ooms, A., Van den Bergh, M.: A class of counterexamples to the Gelfand–Kirillov conjecture. Trans. Am. Math. Soc. 348, 1709–1716 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Alev, J., Ooms, A., Van den Bergh, M.: The Gelfand–Kirillov conjecture for Lie algebras of dimension at most eight. J. Algebra 227, 549–581 (2000). Corrigendum. J. Algebra 230, 749 (2000)Google Scholar
  5. 5.
    Borho, W., Gabriel, P., Rentschler, R.: Primideale in Einhullenden auflosbarer Lie-Algebren. Lecture Notes in Math., vol. 357. Springer, Berlin and New York (1973)Google Scholar
  6. 6.
    Bracken, A., Gould, M., Zhang, R.: Quantum group invariants and link polynomials. Commun. Math. Phys. 137, 13–27 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups, Advance Course in Math. CRM Barcelona, vol. 2. Birkhauser, Basel (2002)Google Scholar
  8. 8.
    Caldero, P.: On the Gelfand–Kirillov conjecture for quantum algebras. Proc. AMS 128, 943–951 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Cauchon, G.: Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra 260, 476–518 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dumas, F.: An Introduction to Noncommutative Polynomial Invariants. Lecture Notes, Homological Methods and Representations of Non-commutative Algebras. Mar del Plata, Argentina March 6–17 (2006)Google Scholar
  11. 11.
    Farkas, D., Schofield, A., Snider, R., Stafford, J.: The isomorphism question for division rings of group rings. Proc. AMS 85, 327–330 (1982)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Fauquant-Millet, F.: Quantification de la localisation de de Dixmier de \(U(sl_{n+1}(\mathbb{C}))\). J. Algebra 218, 93–116 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Futorny, V., Molev, A., Ovsienko, S.: The Gelfand–Kirillov Conjecture and Gelfand-Tsetlin modules for finite \(W\)-algebras. Adv. Math. 223, 773–796 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Futorny, V., Ovsienko, S.: Galois orders in skew monoid rings. J. Algebra 324, 598–630 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Goodearl K.R.: Prime spectra of quantized coordinate rings. In: Interactions Between Ring Theory and Representations of Algebras (Murcia). Lecture Notes in Pure and Appl. Math., vol. 210, pp. 205–237. Dekker, New York (2000)Google Scholar
  16. 16.
    Gelfand, IMet, Kirillov, A.A.: Sur les corps liés cor aux algèbres enveloppantes des algèbres de Lie. Publ. Inst. Hautes Sci. 31, 5–19 (1966)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Iohara, K., Malikov, F.: Rings of skew polynomials and Gelfand–Kirillov conjecture for quantum groups. Commun. Math. Phys. 164, 217–237 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Joseph, A.: Proof of the Gelfand–Kirillov conjecture for solvable Lie algebras. Proc. Am. Math. Soc. 45, 1–10 (1974)CrossRefzbMATHGoogle Scholar
  19. 19.
    Joseph, A.: Sur une conjecture de Feigin. C. R. Acad. Sci. Paris Ser.I Math. 320(12) , 1441–1444 (1995)Google Scholar
  20. 20.
    Jordan, D.: A simple localization of the quantized Weyl algebra. J. Algebra 174, 267–281 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Klimyk, A., Schmudgen, K.: Quantum Groups and Their Representations. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Li, J.: The quantum Casimir operators of \(U_q(\mathfrak{gl}_n)\) and their eigenvalues. J. Phys. A: Math. Theor. 43, 345202 (2010) (9pp)Google Scholar
  23. 23.
    Maltsiniotis, G.: Calcul Differentiel Quantique. Groupe de travail, Universite Paris VII, Paris (1992)Google Scholar
  24. 24.
    Mattuck, A.: The field of multisymmetric functions. Proc. Am. Math. Soc. 19, 764–765 (1968)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Mazorchuk, V., Turowska, L.: On Gelfand-Zetlin modules over \(U_q(\mathfrak{gl}_n)\). Czechoslovak J. Physics 50, 139–144 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    McConnell, J.C.: Representations of solvable Lie algebras and the Gelfand–Kirillov conjecture. Proc. Lond. Math. Soc. 29, 453–484 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Miyata, T.: Invariants of certain groups. 1. Nagoya Math. J. 41, 69–73 (1971)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Panov, A.N.: Skew field of rational functions on \(GL_q(n, K)\). Funktsional. Anal. i Prilozhen. 28, 7577 (1994)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Panov, A.: Fields of fractions of quantum solvable algebras. J. Algebra 236, 110–121 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Premet, A.: Modular Lie algebras and the Gelfand–Kirillov conjecture. Invent. Math. 181, 395–420 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Richard, L.: Sur les endomorphismes des tores quantiques. Commun. Algebra 30, 5283–5306 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ueno, K., Takebayashi, T., Shibukawa, Y.: Gelfand–Tsetlin basis for \(U_q(gl(N+1))\). Lett. Math. Phys. 18, 215–221 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Zhelobenko, D.: Compact Lie groups and their representations. Translations of Mathematical Monographs, AMS (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of São PauloSão PauloBrazil
  2. 2.Max Planck Institute for MathematicsBonnGermany
  3. 3.Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations