Mathematische Zeitschrift

, Volume 274, Issue 3–4, pp 1299–1325 | Cite as

Non-formal homogeneous spaces

Article

Abstract

Several large classes of homogeneous spaces are known to be formal—in the sense of rational homotopy theory. However, it seems that far fewer examples of non-formal homogeneous spaces are known. In this article we provide several construction principles and characterisations for non-formal homogeneous spaces, which will yield a lot of examples. This will enable us to prove that, from dimension 72 on, such a space can be found in each dimension.

Keywords

Homogeneous space Non-formal manifold 

Mathematics Subject Classification (2000)

Primary 57N65 Secondary 57T15 57T20 

References

  1. 1.
    Allday, C., Puppe, V.: Cohomological methods in transformation groups. Cambridge Studies in Advanced Mathematics, vol. 32. Cambridge University Press, Cambridge (1993)Google Scholar
  2. 2.
    Amann, M.: Positive Quaternion Kähler manifolds. PhD thesis, WWU Münster (2009). http://miami.uni-muenster.de/servlets/DocumentServlet?id=4869
  3. 3.
    Amann, M.: Computational complexity of topological invariants (2011). arXiv:1112.0812v1Google Scholar
  4. 4.
    Amann, M., Kapovitch, V.: On fibrations with formal elliptic fibers. Adv. Math. 231(3–4), 2048–2068 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Belegradek, I., Kapovitch, V.: Obstructions to nonnegative curvature and rational homotopy theory. J. Am. Math. Soc. 16(2), 259–284 (2003). electronicGoogle Scholar
  6. 6.
    Besse, A.L.: Einstein manifolds. In: Classics in Mathematics. Springer, Berlin (2008, Reprint of the 1987 edition)Google Scholar
  7. 7.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Félix, Y., Halperin, S., Thomas, J.-C.: Elliptic spaces. Bull. Am. Math. Soc. (N.S.) 25(1), 69–73 (1991)MATHCrossRefGoogle Scholar
  9. 9.
    Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory. In: Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)Google Scholar
  10. 10.
    Félix, Y., Oprea, J., Tanré, D.: Algebraic models in geometry. In: Oxford Graduate Texts in Mathematics, vol. 17. Oxford University Press, Oxford (2008)Google Scholar
  11. 11.
    Fernández, M., Muñoz, V.: Non-formal compact manifolds with small betti numbers (2006). arXiv:math/0504396v2Google Scholar
  12. 12.
    Fernández, M., Muñoz, V.: On non-formal simply connected manifolds. Topol. Appl. 135(1–3), 111–117 (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Fernández, M., Muñoz, V.: Formality of Donaldson submanifolds. Math. Z. 250(1), 149–175 (2005)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Garvín, A., Lechuga, L.: The computation of the Betti numbers of an elliptic space is a NP-hard problem. Topol. Appl. 131(3), 235–238 (2003)MATHCrossRefGoogle Scholar
  15. 15.
    Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. vol. III: Cohomology of principal bundles and homogeneous spaces. In: Pure and Applied Mathematics, vol. 47-III. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976)Google Scholar
  16. 16.
    Grove, K., Verdiani, L., Ziller, W.: A positively curved manifold homeomorphic to \(T_1{\mathbb{S}}^4\) (2009). arXiv:0809.2304v3Google Scholar
  17. 17.
    Kapovitch, V.: A note on rational homotopy of biquotients (2012, preprint)Google Scholar
  18. 18.
    Kotschick, D.: On products of harmonic forms. Duke Math. J. 107(3), 521–531 (2001)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kotschick, D., Terzić, S.: On formality of generalized symmetric spaces. Math. Proc. Camb. Philos. Soc. 134(3), 491–505 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Kotschick, D., Terzić, S.: Chern numbers and the geometry of partial flag manifolds. Comment. Math. Helv. 84(3), 587–616 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kotschick, D., Terzić, S.: Geometric formality of homogeneous spaces and of biquotients. Pac. J. Math. 249(1), 157–176 (2011)MATHCrossRefGoogle Scholar
  22. 22.
    Lupton, G.: Variations on a conjecture of Halperin. In: Homotopy and geometry (Warsaw, 1997). Banach Center Publ., vol. 45, pp. 115–135. Polish Acad. Sci., Warsaw (1998)Google Scholar
  23. 23.
    Mimura, M., Toda, H.: Topology of Lie groups. I, II. In: Translations of Mathematical Monographs, vol. 91. American Mathematical Society, Providence (1991). Translated from the 1978 Japanese edition by the authorsGoogle Scholar
  24. 24.
    Neisendorfer, J., Miller, T.: Formal and coformal spaces. Ill. J. Math. 22(4), 565–580 (1978)MathSciNetMATHGoogle Scholar
  25. 25.
    Onishchik, A.L.: Topology of Transitive Transformation Groups. Johann Ambrosius Barth Verlag GmbH, Leipzig (1994)MATHGoogle Scholar
  26. 26.
    Petersen, P., Wilhelm, F.: An exotic sphere with positive sectional curvature (2008). arXiv:0805.0812v3Google Scholar
  27. 27.
    Stȩpień, Z.: On formality of a class of compact homogeneous spaces. Geom. Dedicata 93, 37–45 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tralle, A.: On compact homogeneous spaces with nonvanishing Massey products. In: Differential Geometry and Its Applications (Opava, 1992). Math. Publ., , vol. 1, pp. 47–50. Silesian Univ. Opava (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics, David Rittenhouse LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations