Mathematische Zeitschrift

, Volume 274, Issue 1–2, pp 315–321 | Cite as

On the invariant distributions of \(C^2\) circle diffeomorphisms of irrational rotation number



Lebesgue Measure Invariant Measure Linear Functional Invariant Probability Measure Standard Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. Navas is indebted to A. Kocsard for his interest on this Note as well as many useful conversations on the subject. He would also like to acknowledge the support of the Fondecyt Grant 1120131 and the “Center of Dynamical Systems and Related Fields” (DySyRF). A. Navas and M. Triestino would like to thank ICTP-Trieste for the hospitality at the origin of this work.


  1. 1.
    Avila, A., Kocsard, A.: Cohomological equations and invariant distributions for minimal circle diffeomorphisms. Duke Math. J. 158, 501–536 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Avila, A., Kocsard, A.: Invariant distributions for higher dimensional quasiperiodic maps (preprint, 2012).Google Scholar
  3. 3.
    Douady, R., Yoccoz, J.-C.: Nombre de rotation des difféomorphismes du cercle et mesures automorphes. Regul. Chaotic Dyn. 4, 2–24 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Herman, M.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. de l’IHÉS. 49, 5–233 (1979)Google Scholar
  5. 5.
    Kodama, H., Matsumoto, S.: Minimal \(C^1\)-diffeomorphisms of the circle which admit measurable fundamental domains. Proc. AMS (in press)Google Scholar
  6. 6.
    Navas, A.: Groups of circle diffeomorphisms. In: Chicago Lectures in Mathematics (2011)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Universidad de Santiago de ChileSantiagoChile
  2. 2.École Normale Supérieure de Lyon, CNRS UMR 5669Lyon 07France

Personalised recommendations