Mathematische Zeitschrift

, Volume 273, Issue 3–4, pp 1215–1241 | Cite as

The Bousfield lattice of a triangulated category and stratification

Article

Abstract

For a tensor triangulated category which is well generated in the sense of Neeman, it is shown that the collection of Bousfield classes forms a set. This set has a natural structure of a complete lattice which is then studied, using the notions of stratification and support.

Keywords

Bousfield class Lattice Localizing subcategory Stratification Support 

Mathematics Subject Classification (2000)

Primary; 18E30 55U35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso Tarrí o L., Jeremías López A., Souto Salorio M.J.: Bousfield localization on formal schemes. J. Algebra 278(2), 585–610 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balmer P.: The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math. 588, 149–168 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Balmer P., Favi G.: Generalized tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. 102(6), 1161–1185 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Benson D.J., Iyengar S.B., Krause H.: Local cohomology and support for triangulated categories. Ann. Sci. École Norm. Sup. 41(4), 573–619 (2008)MathSciNetGoogle Scholar
  5. 5.
    Benson D.J., Iyengar S.B., Krause H.: Stratifying modular representations of finite groups. Ann. Math. (1) 174, 1643–1684 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Benson D.J., Iyengar S.B., Krause H.: Stratifying triangulated categories. J. Topol. 4, 641–666 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Benson, D.J., Iyengar, S.B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. doi:10.1515/crelle.2011.180. arXiv:1008.3701
  8. 8.
    Borceux, F.: Handbook of categorical algebra. 3. In: Encyclopedia of Mathematics and its Applications, vol. 52. Cambridge University Press, Cambridge (1994)Google Scholar
  9. 9.
    Bousfield, A.K.: The Boolean algebra of spectra. Comm. Math. Helv. 54, 368–377 (1979) [Correction: Comm. Math. Helv. 58, 599–600 (1983)]Google Scholar
  10. 10.
    Buan A.B., Krause H., Solberg Ø.: Support varieties: an ideal approach. Homol. Homot. Appl. 9(1), 45–74 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Casacuberta, C., Gutiérrez, J.J., Rosický, J.: A generalization of Ohkawa’s theorem. (preprint 2012). arXiv:1203.6395Google Scholar
  12. 12.
    Christensen J.D., Strickland N.P.: Phantom maps and homology theories. Topology 37(2), 339–364 (1998)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dwyer W.G., Palmieri J.H.: Ohkawa’s theorem: there is a set of Bousfield classes. Proc. Am. Math. Soc. 129(3), 881–886 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dwyer W.G., Palmieri J.H.: The Bousfield lattice for truncated polynomial algebras. Homol. Homot. Appl. 10(1), 413–436 (2008)MathSciNetMATHGoogle Scholar
  15. 15.
    Gabriel P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90, 323–448 (1962)MathSciNetMATHGoogle Scholar
  16. 16.
    Hochster M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43–60 (1969)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hovey, M., Palmieri, J.H.: The structure of the Bousfield lattice. In: Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998). Contemp. Math., vol. 239, pp. 175–196. Amer. Math. Soc., Providence, RI (1999)Google Scholar
  18. 18.
    Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. In: Mem. Amer. Math. Soc., vol. 610. Amer. Math. Soc., Providence (1997)Google Scholar
  19. 19.
    Iyengar, S.B.: The Bousfield lattice of the stable module category of a finite group. In: Representation Theory of Quivers and Finite Dimensional Algebras (Oberwolfach, 2011), Oberwolfach Reports, vol. 8, No. 1. European Mathematical Society, Zürich (2011)Google Scholar
  20. 20.
    Johnstone, P.T.: Stone spaces, reprint of the 1982 edition. In: Cambridge Studies in Advanced Mathematics, Vol. 3, Cambridge University Press, Cambridge (1986)Google Scholar
  21. 21.
    Kock, J.: Spectra, supports, and Hochster duality. Letter to G. Favi and P. Balmer, December 2007. http://mat.uab.es/~kock/cat/spec.pdf
  22. 22.
    Krause H.: Smashing subcategories and the telescope conjecture—an algebraic approach. Invent. Math. 139(1), 99–133 (2000)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Krause H.: On Neeman’s well generated triangulated categories. Doc. Math. 6, 121–126 (2001)MathSciNetGoogle Scholar
  24. 24.
    Krause, H.: Localization theory for triangulated categories. In: Triangulated Categories. London Math. Soc. Lecture Note Ser., vol. 375, pp. 161–235, Cambridge University Press, Cambridge (2010)Google Scholar
  25. 25.
    Lewis, L.G., Jr. et al.: Equivariant stable homotopy theory. In: Lecture Notes in Mathematics, vol. 1213. Springer, Berlin (1986)Google Scholar
  26. 26.
    Neeman A.: The chromatic tower for D(R). Topology 31(3), 519–532 (1992)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Neeman A.: The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4) 25(5), 547–566 (1992)MathSciNetMATHGoogle Scholar
  28. 28.
    Neeman A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Am. Math. Soc. 9(1), 205–236 (1996)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Neeman, A.: Triangulated categories. In: Annals of Math. Studies, vol. 148. Princeton University Press, Princeton (2001)Google Scholar
  30. 30.
    Ohkawa T.: The injective hull of homotopy types with respect to generalized homology functors. Hiroshima Math. J. 19(3), 631–639 (1989)MathSciNetMATHGoogle Scholar
  31. 31.
    Ravenel, D.C.: Nilpotence and periodicity in stable homotopy theory. In: Annals of Mathematics Studies, vol. 128. Princeton University Press, Princeton, NJ (1992)Google Scholar
  32. 32.
    Rota G.-C.: The many lives of lattice theory. Not. Am. Math. Soc. 44(11), 1440–1445 (1997)MathSciNetMATHGoogle Scholar
  33. 33.
    Stevenson, G.: Support theory via actions of tensor triangulated categories. J. Reine Angew. Math. doi:10.1515/crelle-2012-0025. arXiv:1105.4692
  34. 34.
    Stevenson, G.: Subcategories of singularity categories via tensor actions (preprint 2011). arXiv:1105:4698Google Scholar
  35. 35.
    Stone M.H.: Topological representations of distributive lattices and Brouwerian logics. Časopis pro Pěstování Matematiky a Fysiky 67, 1–25 (1937)Google Scholar
  36. 36.
    Strickland, N.P.: Axiomatic stable homotopy. In: Axiomatic, Enriched and Motivic Homotopy Theory. NATO Sci. Ser. II Math. Phys. Chem., vol. 131, pp. 69–98, Kluwer Acad. Publ., Dordrecht (2004)Google Scholar
  37. 37.
    Thomason R.W.: The classification of triangulated subcategories. Compos. Math. 105(1), 1–27 (1997)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque, vol. 239. Société Math. de France (1996)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of NebraskaLincolnUSA
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations