Mathematische Zeitschrift

, Volume 273, Issue 3–4, pp 1139–1159

Action of Hecke operators on cohomology of modular curves of level two

Article
  • 196 Downloads

Abstract

We calculate the action of the p-th Hecke operator and the inertia group on the -adic cohomology of modular curve of level Γ0(p2) under the assumption p ≥ 13, using only a local geometrical method. We also calculate the action of the p-th Hecke operator and the inertia group on the -adic cohomology of the Lubin-Tate space of the same level over the maximal unramified extension of \({\mathbb{Q}_p}\).

Mathematics Subject Classification (2010)

Primary 11G18 Secondary 14G35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  2. 2.Faculty of MathematicsKyushu UniversityFukuokaJapan

Personalised recommendations