Advertisement

Mathematische Zeitschrift

, Volume 273, Issue 1–2, pp 173–210 | Cite as

Canonical models of arithmetic (1; e)-curves

  • Jeroen Sijsling
Article
  • 135 Downloads

Abstract

The Fuchsian groups of signature (1; e) are the simplest class of Fuchsian groups for which the calculation of the corresponding quotient of the upper half plane presents a challenge. This paper considers the finite list of arithmetic (1; e)-groups. We define canonical models for the associated quotients by relating these to genus 1 Shimura curves. These models are then calculated by applying results on the \({\mathfrak{p}}\)-adic uniformization of Shimura curves and Hilbert modular forms.

Keywords

Shimura curves Arithmetic groups Uniformization Explicit methods 

Mathematics Subject Classification (2010)

Primary 11G18 Secondary 14G35 14Q05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boutot, J.-F., Carayol, H.: Uniformisation p-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfel’d. Astérisque 196–197, 7 (1991); 45–158 (1992)Google Scholar
  2. 2.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput 24(3–4), 235–265 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Boutot, J.-F., Zink, T.: The p-adic Uniformization of Shimura Curves. Preprint. http://www.mathematik.uni-bielefeld.de/~zink/p-adicuni.ps
  4. 4.
    Carayol H.: Sur la mauvaise réduction des courbes de Shimura. Compos. Math. 59(2), 151–230 (1986)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dieulefait L., Dimitrov M.: Explicit determination of images of Galois representations attached to Hilbert modular forms. J. Number Theory 117(2), 397–405 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dembélé, L., Donnelly, S.: Computing Hilbert modular forms over fields with nontrivial class group. Algorithmic number theory. Lecture Notes in Computer Science, vol. 5011, pp. 371–386. Springer, Berlin (2008)Google Scholar
  7. 7.
    Doi, K., Naganuma, H.: On the algebraic curves uniformized by arithmetical automorphic functions. Ann. Math. (2) 86, 449–460 (1967)Google Scholar
  8. 8.
    Eichler M.: Zur Zahlentheorie der Quaternionen-Algebren. J. Reine Angew. Math 195(1955), 127–151 (1956)MathSciNetGoogle Scholar
  9. 9.
    Elkies, N.D.: Shimura curve computations. Algorithmic Number Theory (Portland, OR, 1998). Lecture Notes in Computer Science, vol. 1423, pp. 1–47. Springer, Berlin (1998)Google Scholar
  10. 10.
    González J., Rotger V.: Non-elliptic Shimura curves of genus one. J. Math. Soc. Jpn 58(4), 927–948 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hallouin E.: Computation of a cover of Shimura curves using a Hurwitz space. J. Algebra 321(2), 558–566 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hida H.: On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves. Am. J. Math 103(4), 727–776 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hijikata H., Pizer A., Shemanske T.: Orders in quaternion algebras. J. Reine Angew. Math 394, 59–106 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kurihara A.: On some examples of equations defining Shimura curves and the Mumford uniformization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25(3), 277–300 (1979)MathSciNetGoogle Scholar
  15. 15.
    Kirschmer M., Voight J.: Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput. 39(5), 1714–1747 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Livné, R.: Cubic exponential sums and Galois representations. Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985). Contemp. Math., vol. 67, pp. 247–261. Amer. Math. Soc., Providence (1987)Google Scholar
  17. 17.
    Milne, J.S.: Introduction to Shimura Varieties. http://www.jmilne.org/math/xnotes/svi.html
  18. 18.
    Molina, S.: Equations of hyperelliptic Shimura curves. Preprint. http://arxiv.org/abs/1004.3675 (2010)
  19. 19.
    Neukirch, J.: Algebraic number theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Springer, Berlin (1999)Google Scholar
  20. 20.
    Ogg, A.P.: Real points on Shimura curves. Arithmetic and Geometry, vol. I. Progr. Math., vol. 35, pp. 277–307. Birkhäuser, Boston (1983)Google Scholar
  21. 21.
    Ribet K.A.: On modular representations of \({{{\rm Gal}}(\overline {\bf Q}/{\bf Q})}\) arising from modular forms. Invent. Math 100(2), 431–476 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. Math. (2) 91, 144–222 (1970)Google Scholar
  23. 23.
    Sijsling, J.: Equations for arithmetic pointed tori. Ph.D. thesis, Universiteit Utrecht (2010)Google Scholar
  24. 24.
    Sijsling, J.: Magma programs for arithmetic pointed tori. http://sites.google.com/site/sijsling/programs (2010)
  25. 25.
    Sijsling, J.: Arithmetic (1;e)-curves and Belyĭ maps. Math.Comp. (2011, to appear)Google Scholar
  26. 26.
    Skinner C.M., Wiles A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89, 5–126 (1999)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Socrates J., Whitehouse D.: Unramified Hilbert modular forms, with examples relating to elliptic curves. Pac. J. Math 219(2), 333–364 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Takeuchi K.: A characterization of arithmetic Fuchsian groups. J. Math. Soc. Jpn 27(4), 600–612 (1975)zbMATHCrossRefGoogle Scholar
  29. 29.
    Takeuchi K.: Arithmetic Fuchsian groups with signature (1; e). J. Math. Soc. Jpn. 35(3), 381–407 (1983)zbMATHCrossRefGoogle Scholar
  30. 30.
    Varshavsky Y.: p-adic uniformization of unitary Shimura varieties. Inst. Hautes Études Sci. Publ. Math 87, 57–119 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Vignéras, Marie-France: Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800. Springer, Berlin (1980)Google Scholar
  32. 32.
    Voight J.: Computing fundamental domains for Fuchsian groups. J. Théor. Nombres Bordeaux 21(2), 469–491 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Voight J.: Shimura curves of genus at most two. Math. Comput 78(266), 1155–1172 (2009)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Voight, J.: Computing automorphic forms on Shimura curves over fields with arbitrary class number. Algorithmic number theory. Lecture Notes in Computer Science, vol. 6197, pp. 357–371. Springer, Berlin (2010)Google Scholar
  35. 35.
    Zhang, S.: Heights of Heegner points on Shimura curves. Ann. Math. (2) 153(1), 27–147 (2001)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.IRMARRennesFrance

Personalised recommendations