Mathematische Zeitschrift

, Volume 272, Issue 3–4, pp 1291–1320 | Cite as

Symplectic capacity and short periodic billiard trajectory



We prove that a bounded domain Ω in \({\mathbb R^n}\) with smooth boundary has a periodic billiard trajectory with at most n + 1 bounce times and of length less than Cnr(Ω), where Cn is a positive constant which depends only on n, and r(Ω) is the supremum of radius of balls in Ω. This result improves the result by C. Viterbo, which asserts that Ω has a periodic billiard trajectory of length less than \({C'_{n} {\rm vol}(\Omega)^{1/n}}\). To prove this result, we study symplectic capacity of Liouville domains, which is defined via symplectic homology.


Symplectic capacity Periodic billiard trajectory Symplectic homology 

Mathematics Subject Classification (2010)

Primary 34C25 Secondary 53D40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, P., Mazzucchelli, M.: Periodic bounce orbits of prescribed energy. Int. Math. Res. Notices. doi:10.1093/imrn/rnq193 (2010)
  2. 2.
    Benci V., Giannoni F.: Periodic bounce trajectories with a low number of bounce points. Ann. Inst. Henri Poincaré Anal. Non Linéaire 6(1), 73–93 (1989)MathSciNetMATHGoogle Scholar
  3. 3.
    Cieliebak K.: Handle attaching in symplectic homology and the Chord Conjecture. J. Eur. Math. Soc. 4, 115–142 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cieliebak K., Floer A., Hofer H., Wysocki K.: Applications of symplectic homology II: stability of the action spectrum. Math. Z. 223, 27–45 (1996)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Long Y.: Index Theory for Symplectic Paths with Applications. Progr. Math., vol. 207. Birkhäuser, Basel (2002)CrossRefGoogle Scholar
  6. 6.
    Oancea A.: A survery of Floer homology for manifolds with contact type boundary or symplectic homology. Ensaios Math. 7, 51–91 (2004)MathSciNetGoogle Scholar
  7. 7.
    Viterbo C.: Functors and computations in Floer homology I. Geom. Funct. Anal. 9, 985–1033 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Viterbo C.: Metric and isoperimetic problems in symplectic geometry. J. Am. Math. Soc. 13(2), 411–431 (2000)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Weinstein A.: Contact surgery and symplectic handlebodies. Hokk. Math. J. 20, 241–251 (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKyoto UniversityKyotoJapan

Personalised recommendations