Mathematische Zeitschrift

, Volume 272, Issue 1–2, pp 645–674 | Cite as

Ruled Laguerre minimal surfaces

  • Mikhail SkopenkovEmail author
  • Helmut Pottmann
  • Philipp Grohs


A Laguerre minimal surface is an immersed surface in \({\mathbb{R}^3}\) being an extremal of the functional \({\int (H^2/K-1)dA}\). In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces \({\mathbf{R}(\varphi,\lambda) = ( A\varphi,\, B\varphi,\, C\varphi + D\cos 2\varphi\, ) + \lambda\left(\sin \varphi,\, \cos \varphi,\, 0\,\right)}\), where \({A,B,C,D\in \mathbb{R}}\) are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.


Laguerre geometry Laguerre minimal surface Ruled surface Biharmonic function 

Mathematics Subject Classification (2000)

53A40 49Q10 31A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balk M.B., Zuev M.F.: On polyanalytic functions. Russ. Math. Surv. 25(5), 201–223 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blaschke W.: Über die Geometrie von Laguerre II: Flächentheorie in Ebenenkoordinaten. Abh. Math. Sem. Univ. Hamburg 3, 195–212 (1924)CrossRefGoogle Scholar
  3. 3.
    Blaschke W.: Über die Geometrie von Laguerre III: Beiträge zur Flächentheorie. Abh. Math. Sem. Univ. Hamburg 4, 1–12 (1925)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Blaschke W.: Vorlesungen über Differentialgeometrie, vol. 3. Springer, Berlin (1929)Google Scholar
  5. 5.
    Bobenko A.I., Hoffmann T., Springborn B.A.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164, 231–264 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bobenko A.I., Suris Y.: On organizing principles of discrete differential geometry, geometry of spheres. Russ. Math. Surv. 62, 1–43 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bobenko A.I., Suris Y.: Discrete Differential Geoemtry: Integrable Structure. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
  8. 8.
    Cecil T.: Lie Sphere Geometry. Springer, Berlin (1992)zbMATHGoogle Scholar
  9. 9.
    Dorfmeister, J.: Generalized Weierstrass representations of surfaces. In: Surveys on Geometry and Integrable systems. Advanced Studies in Pure Math., vol. 51Google Scholar
  10. 10.
    Duffin R.J.: Continuation of biharmonic functions by reflection. Duke Math. J. 22(2), 313–324 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gollek, H.: Deformations of minimal curves containing planar geodesics. In: Proceedings of the 18th Winter School on Geometry and Physics, Srni, 1998 (suppl. ai rendiconti del Circolo matematico di Palermo, serie II, numero 59) (1999)Google Scholar
  12. 12.
    König, K.: L-Minimalflächen. Mitt. Math. Ges. Hamburg, pp. 189–203 (1926)Google Scholar
  13. 13.
    König, K.: L-Minimalflächen II. Mitt. Math. Ges. Hamburg, pp. 378–382 (1928)Google Scholar
  14. 14.
    Li T.: Laguerre geometry of surfaces in \({\mathbb{R}^3}\). Acta Math. Sin. 21, 1525–1534 (2005)zbMATHCrossRefGoogle Scholar
  15. 15.
    Liu Y., Pottmann H., Wallner J., Yang Y.-L., Wang W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25(3), 681–689 (2006)CrossRefGoogle Scholar
  16. 16.
    Musso E., Nicolodi L.: L-minimal canal surfaces. Rendiconti di Mat. 15, 421–445 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Musso E., Nicolodi L.: A variational problem for surfaces in Laguerre geometry. Trans. Am. Math. Soc. 348, 4321–4337 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Palmer B.: Remarks on a variational problem in Laguerre geometry. Rendiconti di Mat. 19, 281–293 (1999)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pinkall U.: Dupin’sche Hyperflächen in E 4. Manuscr. Math. 51, 89–119 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Poritzki H.: Application of analytic functions to two-dimensional biharmonic analysis. Trans. Am. Math. Soc. 59, 248–279 (1946)CrossRefGoogle Scholar
  21. 21.
    Pottmann H., Grohs P., Blaschitz B.: Edge offset meshes in Laguerre geometry. Adv. Comput. Math. 33, 45–73 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pottmann H., Grohs P., Mitra N.J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31, 391–419 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pottmann H., Liu Y.: Discrete surfaces of isotropic geometry with applications in architecture. In: Martin, R., Sabin, M., Winkler, J. (eds) The Mathematics of Surfaces. Lecture Notes in Computer Science, vol. 4647, pp. 341–363. Springer, Berlin (2007)Google Scholar
  24. 24.
    Pottmann H., Liu Y., Wallner J., Bobenko A.I., Wang W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 25(3), 1–11 (2007)Google Scholar
  25. 25.
    Pottmann H., Peternell M.: Applications of Laguerre geometry in CAGD. Comput. Aid. Geom. Des. 15, 165–186 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Pottmann H., Wallner J.: The focal geometry of circular and conical meshes. Adv. Comput. Math 29, 249–268 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Sachs H.: Isotrope Geometrie des Raumes. Vieweg, Braunschweig (1990)zbMATHCrossRefGoogle Scholar
  28. 28.
    Strubecker K.: Differentialgeometrie des isotropen Raumes I: Theorie der Raumkurven. Sitzungsber. Akad. Wiss. Wien, Abt. IIa 150, 1–53 (1941)MathSciNetGoogle Scholar
  29. 29.
    Strubecker K.: Differentialgeometrie des isotropen Raumes II: Die Flächen konstanter Relativkrümmung K = rts 2. Math. Z. 47, 743–777 (1942)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Strubecker K.: Differentialgeometrie des isotropen Raumes III: Flächentheorie. Math. Z. 48, 369–427 (1942)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wallner J., Pottmann H.: Infinitesimally flexible meshes and discrete minimal surfaces. Monatsh. Math. 153, 347–365 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Wang C.: Weierstrass representations of Laguerre minimal surfaces in \({\mathbb{R}^3}\). Results Math. 52, 399–408 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mikhail Skopenkov
    • 1
    • 2
    Email author
  • Helmut Pottmann
    • 3
  • Philipp Grohs
    • 4
  1. 1.Institute for Information Transmission Problems of the Russian Academy of SciencesMoscowRussian Federation
  2. 2.King Abdullah University of Science and Technology, 4700ThuwalKingdom of Saudi Arabia
  3. 3.King Abdullah University of Science and Technology, 4700ThuwalKingdom of Saudi Arabia
  4. 4.Seminar for Applied MathematicsETH ZentrumZurichSwitzerland

Personalised recommendations