Mathematische Zeitschrift

, Volume 272, Issue 1–2, pp 577–588 | Cite as

Non-uniqueness of Fourier–Mukai kernels

  • Alberto Canonaco
  • Paolo StellariEmail author


We prove that the kernels of Fourier–Mukai functors are not unique in general. On the other hand we show that the cohomology sheaves of those kernels are unique. We also discuss several properties of the functor sending an object in the derived category of the product of two smooth projective schemes to the corresponding Fourier–Mukai functor.


Derived categories Fourier–Mukai functors 

Mathematics Subject Classification (2000)

14F05 18E25 18E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah M.: On the Krull–Schmidt theorem with application to sheaves. Bull. Soc. Math. France 84, 307–317 (1956)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ballard, M.R.: Equivalences of derived categories of sheaves on quasi-projective schemes. arXiv:0905. 3148Google Scholar
  3. 3.
    Bondal A., Larsen M., Lunts V.: Grothendieck ring of pretriangulated categories. Int. Math. Res. Not. 29, 1461–1495 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bondal A., Van den Bergh M.: Generators and representability of functors in commutative and noncommutative geometry. Moscow Math. J. 3, 1–36 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Căldăraru A.: Derived categories of sheaves: a skimming, Snowbird lectures in algebraic geometry. Contemp. Math. Am. Math. Soc. 388, 43–75 (2005)CrossRefGoogle Scholar
  6. 6.
    Canonaco A., Stellari P.: Twisted Fourier–Mukai functors. Adv. Math. 212, 484–503 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Canonaco, A., Stellari, P.: Fourier–Mukai functors in the supported case. arXiv:1010.0798Google Scholar
  8. 8.
    Grothendieck A.: Éléments de géométrie algébrique. II. Inst. Hautes Études Sci. Publ. Math. 8, 222 (1961)Google Scholar
  9. 9.
    Kawamata Y.: Equivalences of derived categories of sheaves on smooth stacks. Am. J. Math. 126, 1057–1083 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Keller B., Yang D., Zhou G.: The Hall algebra of a spherical object. J. Lond. Math. Soc. (2) 80, 771–784 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lunts V., Orlov D.: Uniqueness of enhancements for triangulated categories. J. Am. Math. Soc. 23, 853–908 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Orlov D.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. 84, 1361–1381 (1997)zbMATHCrossRefGoogle Scholar
  13. 13.
    Rouquier R.: Dimensions of triangulated categories. J. K-theory 1, 193–258 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Toën B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167, 615–667 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Tu L.W.: Semistable bundles over an elliptic curve. Adv. Math. 98, 1–26 (1993)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di Matematica “F. Casorati”Università degli Studi di PaviaPaviaItaly
  2. 2.Dipartimento di Matematica “F. Enriques”Università degli Studi di MilanoMilanItaly

Personalised recommendations