Advertisement

Mathematische Zeitschrift

, Volume 271, Issue 1–2, pp 399–413 | Cite as

Reverse estimates in growth spaces

  • Evgeny Abakumov
  • Evgueni DoubtsovEmail author
Article

Abstract

Let H(B d ) denote the space of holomorphic functions on the unit ball B d of \({{\mathbb{C}}^d}\). Given a radial doubling weight w, we construct functions \({f, g\in H(B_1)}\) such that |f| + |g| is comparable to w. Also, we obtain similar results for B d , d ≥ 2, and for circular, strictly convex domains with smooth boundary. As an application, we study weighted composition operators and related integral operators on growth spaces of holomorphic functions.

Keywords

Growth space Circular domain Composition operator Bloch space 

Mathematics Subject Classification (2000)

MSC 30H99 MSC 32A37 MSC 47B38 MSC 30H30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A.B.: Proper holomorphic mappings from the ball to the polydisk. Dokl. Akad. Nauk SSSR 286(1), 11–15 (Russian) (1986); English transl.: Soviet Math. Dokl. 33(1), 1–5 (1986)Google Scholar
  2. 2.
    Aleman, A.: A class of integral operators on spaces of analytic functions. In: Topics in Complex Analysis and Operator Theory, pp. 3–30. Univ. Málaga, Málaga (2007)Google Scholar
  3. 3.
    Beatrous F., Burbea J.: Holomorphic Sobolev spaces on the ball. Dissertationes Math. (Rozprawy Mat.) 276, 60 (1989)MathSciNetGoogle Scholar
  4. 4.
    Blasco O., Lindström M., Taskinen J.: Bloch-to-BMOA compositions in several complex variables. Complex Var. Theory Appl. 50(14), 1061–1080 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Borichev A.: The polynomial approximation property in Fock-type spaces. Math. Scand. 82(2), 256–264 (1998)MathSciNetGoogle Scholar
  6. 6.
    Borichev A., Lyubarskiĭ Y., Malinnikova E., Thomas P.: Radial growth of functions in the Korenblum space. Algebra i Analiz 21(6), 47–65 (2009)Google Scholar
  7. 7.
    Borichev A., Lyubarskiĭ Y., Malinnikova E., Thomas P.: Radial growth of functions in the Korenblum space. St. Petersburg Math. J. 21(6), 877–891 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Choe B.R., Rim K.S.: Fractional derivatives of Bloch functions, growth rate, and interpolation. Acta Math. Hungar. 72(1–2), 67–86 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cowen C.C., MacCluer B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)Google Scholar
  10. 10.
    Doubtsov E.: Growth spaces on circular domains: composition operators and Carleson measures. C. R. Math. Acad. Sci. Paris 347(11–12), 609–612 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Eikrem, K.S., Malinnikova, E.: Radial growth of harmonic functions in the unit ball. Preprint. arXiv:1006.5000Google Scholar
  12. 12.
    Galanopoulos P.: On B log to \({Q^p_{\rm log}}\) pullbacks. J. Math. Anal. Appl. 337(1), 712–725 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gauthier P.M., Xiao J.: BiBloch-type maps: existence and beyond. Complex Var. Theory Appl. 47(8), 667–678 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Girela D., Peláez J.Á., Pérez-González F., Rättyä J.: Carleson measures for the Bloch space. Integral Equ. Oper. Theory 61(4), 511–547 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hu Z.: Extended Cesàro operators on mixed norm spaces. Proc. Am. Math. Soc. 131(7), 2171–2179 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kot P.: Homogeneous polynomials on strictly convex domains. Proc. Am. Math. Soc. 135(12), 3895–3903 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kotilainen M.: On composition operators in Q K type spaces. J. Funct. Spaces Appl. 5(2), 103–122 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Krantz S.G., Stević S.: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. 71(5-6), 1772–1795 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kwon E.G.: Hyperbolic mean growth of bounded holomorphic functions in the ball. Trans. Am. Math. Soc. 355(3), 1269–1294 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Lindström M., Makhmutov S., Taskinen J.: The essential norm of a Bloch-to-Q p composition operator. Canad. Math. Bull. 47(1), 49–59 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Madigan K., Matheson A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347(7), 2679–2687 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Pau J.: Composition operators between Bloch-type spaces and M öbius invariant Q K spaces. Rocky Mt. J. Math. 39(6), 2051–2065 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pau J., Peláez J.Á.: Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Funct. Anal. 259(10), 2727–2756 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pommerenke C.: Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment. Math. Helv. 52(4), 591–602 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ramey W., Ullrich D.: Bounded mean oscillation of Bloch pull-backs. Math. Ann. 291(4), 591–606 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ryll J., Wojtaszczyk P.: On homogeneous polynomials on a complex ball. Trans. Am. Math. Soc. 276(1), 107–116 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Shapiro J.H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer, New York (1993)Google Scholar
  28. 28.
    Taylor G.D.: A note on the growth of functions in H p. Ill. J. Math. 12, 171–174 (1968)zbMATHGoogle Scholar
  29. 29.
    Xiao J.: Riemann–Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball. J. Lond. Math. Soc. (2) 70(1), 199–214 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050Université Paris-EstMarne-la-Vallée Cedex 2France
  2. 2.St. Petersburg Department of V.A. Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations