Advertisement

Mathematische Zeitschrift

, Volume 271, Issue 1–2, pp 373–397 | Cite as

Affine cellularity of affine Hecke algebras of rank two

  • Jérémie GuilhotEmail author
  • Vanessa Miemietz
Article

Abstract

We show that affine Hecke algebras of rank two with generic parameters are affine cellular in the sense of Koenig–Xi.

Keywords

Weyl Group Left Ideal Matrix Ring Principal Ideal Domain Left Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnafé C.: Semicontinuity properties of Kazhdan-Lusztig cells. N.Z. J. Math. 39, 171–192 (2009)zbMATHGoogle Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie, Chaps. 4–6. Hermann, Paris (1968); Masson, Paris (1981)Google Scholar
  3. 3.
    Geck M.: On the induction of Kazhdan-Lusztig cells. Bull. Lond. Math. Soc. 35, 608–614 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Geck M.: Hecke algebras of finite type are cellular. Invent. Math. 169, 501–517 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Graham J.J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Guilhot, J.: Some computations about Kazhdan-Lusztig cells in affine Weyl groups of rank 2. http://arxiv.org/abs/0810.5165
  7. 7.
    Guilhot J.: Generalized induction of Kazhdan-Lusztig cells. Ann. Inst. Fourier 59, 1385–1412 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Guilhot J.: Kazhdan-Lusztig cells in affine Weyl groups of rank 2. Int. Math. Res. Not. 2010, 3422–3462 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Koenig, S., Xi, C.: Affine cellular algebras. Preprint. http://math.bnu.edu.cn/ccxi/Papers/Articles/affcell.pdf
  10. 10.
    Lusztig G.: Hecke algebras and Jantzen’s generic decomposition patterns. Adv. Math. 37, 121–164 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lusztig, G.: Hecke algebras with unequal parameters. In: CRM Monograph Series, vol. 18. Amer. Math. Soc., Providence (2003)Google Scholar
  12. 12.
    Opdam E., Solleveld M.: Homological algebra for affine Hecke algebras. Adv. Math. 220(5), 1549–1601 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of MathematicsUniversity of East AngliaNorwichUK

Personalised recommendations