Mathematische Zeitschrift

, Volume 270, Issue 1–2, pp 277–295 | Cite as

On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon

Article

Keywords

2-Calabi–Yau category Cluster structure Cluster tilting subcategory Derived category Differential graded algebra Differential graded module Fomin–Zelevinsky mutation Spherical object Quiver Weak cluster tilting subcategory 

Mathematics Subject Classification (2010)

13F60 16E45 16G20 16G70 18E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baur K., Marsh R.: A geometric description of m-cluster categories. Trans. Am. Math. Soc. 360, 5789–5803 (2008)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bernstein, J., Lunts, V.: Equivariant sheaves and functors. In: Lecture Notes in Math, vol. 1578. Springer, Berlin (1994)Google Scholar
  3. 3.
    Buan A.B., Iyama O., Reiten I., Scott J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. Compos. Math. 145, 1035–1079 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Buan A.B., Marsh R.J., Reineke M., Reiten I., Todorov G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–618 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Buan A.B., Marsh R.J., Vatne D.F.: Cluster structures from 2-Calabi–Yau categories with loops. Math. Z. 265, 951–970 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Caldero P., Chapoton F., Schiffler R.: Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc. 358, 1347–1364 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Fomin S., Zelevinsky A.: Cluster algebras II: finite type classification. Invent. Math. 154, 63–121 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Iyama O.: Auslander correspondence. Adv. Math. 210, 51–82 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Iyama O.: Higher dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. 210, 22–50 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Iyama O., Yoshino Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172, 117–168 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Jørgensen P.: Auslander–Reiten theory over topological spaces. Comment. Math. Helv. 79, 160–182 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Keller B.: On triangulated orbit categories. Documenta Math. 10, 551–581 (2005)MATHGoogle Scholar
  13. 13.
    Keller B., Reiten I.: Acyclic Calabi–Yau categories.With an appendix by Michel Van den Bergh. Compos. Math. 144, 1332–1348 (2008)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Keller B., Reiten I.: Cluster tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211, 123– 151 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Keller B., Yang D., Zhou G.: The Hall algebra of a spherical object. J. Lond. Math. Soc. 80, 771–784 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    König S., Zhu B.: From triangulated categories to abelian categories—cluster tilting in a general framework. Math. Z. 258, 143–160 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kuribayashi, K.: On the levels of spaces and topological realization of objects in a triangulated category, preprint, available on the author’s web page, http://www.marine.shinshu-u.ac.jp/kuri/papers.html (2010)
  18. 18.
    Reiten I., Van den Bergh M.: Noetherian hereditary abelian categories satisfying Serre duality. J. Am. Math. Soc. 15, 295–366 (2002)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Thomas H.: Defining an m-cluster category. J. Algebra 318, 37–46 (2007)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Zhu B.: Generalized cluster complexes via quiver representations. J. Algebraic Combin. 27, 25–54 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und PhysikLeibniz Universität HannoverHannoverGermany
  2. 2.School of Mathematics and StatisticsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations