Mathematische Zeitschrift

, Volume 270, Issue 1–2, pp 19–42 | Cite as

Crossed products by finite group actions with the Rokhlin property

Article

Abstract

We prove that a number of classes of separable unital C*-algebras are closed under crossed products by finite group actions with the Rokhlin property, including: (a) AI algebras, AT algebras, and related classes characterized by direct limit decompositions using semiprojective building blocks. (b) Simple unital AH algebras with slow dimension growth and real rank zero. (c) C*-algebras with real rank zero or stable rank one. (d) Simple C*-algebras for which the order on projections is determined by traces. (e) C*-algebras whose quotients all satisfy the Universal Coefficient Theorem. (f) C*-algebras with a unique tracial state. Along the way, we give a systematic treatment of the derivation of direct limit decompositions from local approximation conditions by homomorphic images which are not necessarily injective.

Mathematics Subject Classification (2000)

Primary 46L55 Secondary 46L35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archey, D.: Crossed product C*-algebras by finite group actions with a generalized tracial Rokhlin property. Ph.D. Thesis, University of Oregon, Eugene (2008)Google Scholar
  2. 2.
    Blackadar B.: Shape theory for C*-algebras. Math. Scand. 56, 249–275 (1985)MATHMathSciNetGoogle Scholar
  3. 3.
    Blackadar B.: Symmetries of the CAR algebra. Ann. Math. 131(2), 589–623 (1990)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Blackadar B. : Comparison theory for simple C*-algebras. In: Evans, D.E., Takesaki, M. Takesaki (eds) Operator Algebras and Applications (London Math. Soc. Lecture Notes Series no. 135) Cambridge University Press, pp. 21–54. Cambridge University Press, Cambridge, New York (1988)Google Scholar
  5. 5.
    Blackadar B.: Semiprojectivity in simple C*-algebras. In: Operator Algebras and Applications (Adv. Stud. Pure Math. vol. 38), pp. 1–17. Math. Soc. Japan, Tokyo (2004)Google Scholar
  6. 6.
    Blackadar B., Kumjian A., Rørdam M.: Approximately central matrix units and the structure of non-commutative tori. K-Theory 6, 267–284 (1992)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Brown, L.G., Pedersen, G.K.: C*-algebras of real rank zero. J. Funct. Anal. 99, 131–149 (1991)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Brown, L.G., Pedersen, G.K.: On the geometry of the unit ball of a C*-algebra. J. Reine Angew. Math. 469, 113–147 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Brown L.G., Pedersen G.K.: Ideal structure and C*-algebras of low rank. Math. Scand. 100, 5–33 (2007)MATHMathSciNetGoogle Scholar
  10. 10.
    Dadarlat, M.: Some remarks on the universal coefficient theorem in KK-theory. In: Operator Algebras and Mathematical Physics (Constanţa, 2001), pp. 65–74. Theta, Bucharest (2003)Google Scholar
  11. 11.
    Dǎdǎrlat, M., Eilers, S.: Approximate homogeneity is not a local property. J. Reine Angew. Math. 507, 1–13 (1999)MathSciNetGoogle Scholar
  12. 12.
    Echterhoff S, Lück W, Phillips N.C, Walters S.: The structure of crossed products of irrational rotation algebras by finite subgroups of \({{\rm SL}_2 ({\mathbb{Z}})}\) . J. Reine Angew. Math 639, 173–221 (2010)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Eilers, S., Loring, T.A., Pedersen, G.K.: Stability of anticommutation relations. An application of noncommutative CW complexes. J. Reine Angew. Math. 499, 101–143 (1998)MATHMathSciNetGoogle Scholar
  14. 14.
    Elliott, G.A. A classification of certain simple C*-algebras. In: Araki, H. et al. (eds.) Quantum and Non-Commutative Analysis, pp. 373–385, Kluwer, Dordrecht (1993)Google Scholar
  15. 15.
    Hirshberg I., Rørdam M., Winter W.: C 0(X)-algebras, stability and strongly self-absorbing C*-algebras. Math. Ann. 339, 695–732 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Hirshberg, I., Winter, W.: Rokhlin actions and self-absorbing C*-algebras. Pac. J. Math. 233, 125–143 (2007)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Izumi, M.: Finite group actions on C*-algebras with the Rohlin property, I. Duke Math. J. 122, 233–280 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jeong, J.A.: Purely infinite simple C*-crossed products. Proc. Am. Math. Soc. 123, 3075–3078 (1995)MATHMathSciNetGoogle Scholar
  19. 19.
    Jeong, J.A., Osaka, H., Phillips, N.C., Teruya, T.: Cancellation for inclusions of C*-algebras of finite depth. Indiana Univ. Math. J. 58, 1537–1564 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Lin H.: An Introduction to the Classification of Amenable C*-Algebras. World Scientific, River Edge, NJ (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Lin H.: Classification of simple C*-algebras with tracial topological rank zero. Duke Math. J. 125, 91–119 (2005)CrossRefMATHGoogle Scholar
  22. 22.
    Loring, T.A.: Lifting Solutions to Perturbing Problems in C*-Algebras (Fields Institute Monographs, vol. 8). American Mathematical Society, Providence (1997)Google Scholar
  23. 23.
    Matui, H., Sato, Y.: \({{\mathcal{Z}}}\) -stability of crossed products by strongly outer actions. preprint (arXiv: 0912.4804v1 [math.OA])Google Scholar
  24. 24.
    Nagisa, M.: Single generation and rank of C*-algebras. In: Operator Algebras and Applications (Adv. Stud. Pure Math., vol. 38), pp. 135–143. Math. Soc. Japan, Tokyo (2004)Google Scholar
  25. 25.
    Olsen, C.L., Zame, W.R.: Some C*-algebras with a single generator. Trans. Am. Math. Soc. 215, 205–217 (1976)MATHMathSciNetGoogle Scholar
  26. 26.
    Osaka, H., Phillips, N.C.: Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property. Ergod. Theory Dyn. Syst. 26, 1579–1621 (2006)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Osaka, H., Phillips, N.C.: Crossed products of simple C*-algebras with tracial rank one by actions with the tracial Rokhlin property (in preparation)Google Scholar
  28. 28.
    Osaka, H., Teruya, T.: Strongly selfabsorbing property for inclusions of C*-algebras with a finite Watatani index preprint (arXiv: 1002.4233v1 [math.OA])Google Scholar
  29. 29.
    Pasnicu, C., Phillips, N.C.: Crossed products of C*-algebras with the ideal property (in preparation)Google Scholar
  30. 30.
    Pedersen G.K.: Pullback and pushout constructions in C*-algebra theory. J. Funct. Anal. 167, 243–344 (1999)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Phillips, N.C.: The tracial Rokhlin property for actions of finite groups on C*-algebras. Am. J. Math. (to appear)Google Scholar
  32. 32.
    Phillips, N.C.: Finite cyclic group actions with the tracial Rokhlin property. Trans. Am. Math. Soc. (to appear)Google Scholar
  33. 33.
    Phillips, N.C.: Every simple higher dimensional noncommutative torus is an AT algebra. preprint (arXiv: math.OA/0609783)Google Scholar
  34. 34.
    Phillips, N.C., Viola, M.G.: A simple separable exact C*-algebra not anti-isomorphic to itself. Math. Ann. (to appear)Google Scholar
  35. 35.
    Rieffel, M.A.: Dimension and stable rank in the K-theory of C*-algebras. Proc. Lond. Math. Soc. 46(3), 301–333 (1983)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Toms, A.S., Winter, W.: Strongly selfabsorbing C*-algebras. Trans. Am. Math. Soc. 359, 3999–4029(2007)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Winter, W.: Strongly self-absorbing C*-algebras are \({{\mathcal{Z}}}\) -stable. preprint (arXiv: 0905.0583v1 [math.OA])Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRitsumeikan UniversityKusatsu, ShigaJapan
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations