Advertisement

Mathematische Zeitschrift

, Volume 268, Issue 3–4, pp 725–751 | Cite as

Embedding into manifolds with torsion

  • Diego Conti
Article

Abstract

We introduce a class of special geometries associated to the choice of a differential graded algebra contained in \({\Lambda^*\mathbb{R}^n}\). We generalize some known embedding results, that effectively characterize the real analytic Riemannian manifolds that can be realized as submanifolds of a Riemannian manifold with special holonomy, to this more general context. In particular, we consider the case of hypersurfaces inside nearly-Kähler and α-Einstein–Sasaki manifolds, proving that the corresponding evolution equations always admit a solution in the real analytic case.

Keywords

Embedding Special geometries Cartan–Kähler 

Mathematics Subject Classification (2000)

53C25 58A15 53C38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bär C.: Real Killing spinors and holonomy. Comm. Math. Phys. 154(3), 509–521 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bär C., Gauduchon P., Moroianu A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bobieński M., Nurowski P.: Irreducible SO(3) geometry in dimension five. J. Reine Angew. Math. 605, 51–93 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bochner S.: Analytic mapping of compact Riemann spaces into Euclidean space. Duke Math. J. 3(2), 339–354 (1937)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bryant, R.L.: Nonembedding and nonextension results in special holonomy. In: Proceedings of the August 2006 Madrid Conference in Honor of Nigel Hitchin’s 60th Birthday. Oxford University PressGoogle Scholar
  6. 6.
    Bryant R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)CrossRefGoogle Scholar
  7. 7.
    Bryant R.L.: Calibrated embeddings in the special Lagrangian and coassociative cases. Ann. Glob. Anal. Geom. 18, 405–435 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A.: Exterior Differential Systems. Springer-Verlag, New York (1991)zbMATHGoogle Scholar
  9. 9.
    Conti D.: Cohomogeneity one Einstein-Sasaki 5-manifolds. Comm. Math. Phys. 274(3), 751–774 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Conti, D.: Symbolic computations in differential geometry. arXiv:0804.3193 (2008)Google Scholar
  11. 11.
    Conti, D., Fino. A.: Calabi-Yau cones from contact reduction. Ann. Glob. Anal. Geom. (2007, to appear)Google Scholar
  12. 12.
    Conti D., Salamon S.: Generalized Killing spinors in dimension 5. Trans. Am. Math. Soc. 359(11), 5319–5343 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fernández M., Ivanov S., Muñoz V., Ugarte L.: Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities. J. Lond. Math. Soc. (2) 78(3), 580–604 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Harvey R., Lawson H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hitchin, N.: Stable forms and special metrics. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray, vol. 288 of Contemp. Math., pp. 70–89. American Mathematical Society (2001)Google Scholar
  16. 16.
    Lê H.V., Panák M., Vanžura J.: Manifolds admitting stable forms. Comment. Math. Univ. Carolin 49(1), 101–117 (2008)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Matessi D.: Isometric embeddings of families of special Lagrangian submanifolds. Ann. Glob. Anal. Geom. 29(3), 197–220 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang M.Y.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7, 59–68 (1989)zbMATHCrossRefGoogle Scholar
  19. 19.
    Witt F.: Special metrics and triality. Adv. Math. 219(6), 1972–2005 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Milano BicoccaMilanoItaly

Personalised recommendations