Mathematische Zeitschrift

, Volume 268, Issue 1–2, pp 585–592 | Cite as

On weighted critical imbeddings of Sobolev spaces

  • D. E. Edmunds
  • H. Hudzik
  • M. KrbecEmail author


Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that \({L_{\exp t^{\alpha}}(\chi_B)=L_{\exp t^{\alpha}}(\rho)}\) if and only if \({\rho^q \in L_q}\) with some q > 1. Second, we consider the Sobolev space \({W^{1}_{N}(\varOmega),}\) where Ω is a bounded domain in \({\mathbb{R}^{N}}\) with a sufficiently smooth boundary, and its imbedding into a weighted exponential Orlicz space \({L_{\exp t^{p'}}(\varOmega,\rho)}\) , where ρ is a radial and non-increasing weight function. We show that there exists no effective weighted improvement of the standard target \({L_{\exp t^{N'}}(\varOmega)=L_{\exp t^{N'}}(\varOmega,\chi_{\varOmega})}\) in the sense that if \({W^{1}_{N}(\varOmega)}\) is imbedded into \({L_{\exp t^{p'}}(\varOmega,\rho),}\) then \({L_{\exp t^{p'}}(\varOmega,\rho)}\) and \({L_{\exp t^{N'}}(\varOmega)}\) coincide up to equivalence of the norms; that is, we show that there exists no effective improvement of the standard target space. The same holds for critical cases of higher-order Sobolev spaces and even Besov and Lizorkin–Triebel spaces.


Exponential Orlicz space Weight function Sobolev space Critical imbeddings 

Mathematics Subject Classification (2000)

46E35 46E30 26D15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Diss. Math. (Rozprawy Mat.) CLXXXV, 1–67 (1980)Google Scholar
  2. 2.
    Bennett C., Sharpley R. (1988) Interpolation of Operators. Academic Press, BostonzbMATHGoogle Scholar
  3. 3.
    Buckley S.M., O’Shea J. (1999) Weighted Trudinger-type inequalities. Indiana Univ. Math. J. 48: 85–114MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Edmunds D.E., Krbec M. (2000) On decomposition in exponential Orlicz spaces. Math. Nachr. 213: 77–88MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Edmunds D.E., Triebel H. (1999) Sharp Sobolev embeddings and related Hardy inequalities—the critical case. Math. Nachr. 207: 79–92MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hudzik H., Krbec M. (2007) On non-effective weights in Orlicz spaces. Indag. Mathem. 18: 215–231MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Krbec M., Schott T. (1997) Embeddings of weighted Sobolev spaces in the borderline case. Real Anal. Exch. 23(2): 395–420MathSciNetzbMATHGoogle Scholar
  8. 8.
    Milman, M.: Extrapolation and optimal decompositions: with applications to analysis. Lecture Notes in Math., No. 1580. Springer, Berlin (1994)Google Scholar
  9. 9.
    Pokhozhaev, S.N.: On the imbedding Sobolev theorem for pℓ = n. Dokl. Konf., Section Math., Moscow Power Inst., pp. 305–308 (1965)Google Scholar
  10. 10.
    Triebel H. (2001) The Structure of Functions. Birkhäuser, BaselzbMATHGoogle Scholar
  11. 11.
    Trudinger N. (1967) On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17: 473–483MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SussexFalmer, BrightonUK
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznanPoland
  3. 3.Institute of MathematicsAcademy of Sciences of the Czech RepublicPrague 1Czech Republic

Personalised recommendations