Mathematische Zeitschrift

, Volume 267, Issue 3–4, pp 549–582

# Geometry of curves with exceptional secant planes: linear series along the general curve

Article

## Abstract

We study linear series on a general curve of genus g, whose images are exceptional with regard to their secant planes. Working in the framework of an extension of Brill–Noether theory to pairs of linear series, we prove that a general curve has no linear series with exceptional secant planes, in a very precise sense, whenever the total number of series is finite. Next, we partially solve the problem of computing the number of linear series with exceptional secant planes in a one-parameter family in terms of tautological classes associated with the family, by evaluating our hypothetical formula along judiciously-chosen test families. As an application, we compute the number of linear series with exceptional secant planes on a general curve equipped with a one-dimensional family of linear series. We pay special attention to the extremal case of d-secant (d − 2)-planes to (2d − 1)-dimensional series, which appears in the study of Hilbert schemes of points on surfaces. In that case, our formula may be rewritten in terms of hypergeometric series, which allows us both to prove that it is nonzero and to deduce its asymptotics in d.

## Preview

### References

1. 1.
Arbarello E., Cornalba M., Griffiths P., Harris J.: Geometry of Algebraic Curves, Grundlehren der Math. Wiss., vol. 267. Springer, New York (1985)Google Scholar
2. 2.
Cotterill, E.: Geometry of curves with exceptional secant planes. arXiv:0706.2049Google Scholar
3. 3.
Cotterill, E.: Geometry of curves with exceptional secant planes: effective divisors on $${\overline{\mathcal{M}}_g}$$ (in preparation)Google Scholar
4. 4.
Deutsch E.: Dyck path enumeration. Discret. Math. 204(1–3), 167–202 (1999)
5. 5.
Diaz S., Harris J.: Geometry of the Severi variety. Trans. Am. Math. Soc. 309(1), 1–34 (1988)
6. 6.
Du, R., Yin, J.: Counting labelled trees with given indegree sequence. http://arXiv.org/pdf/0712.4032v1
7. 7.
Eisenbud D., Harris J.: Divisors on general curves and cuspidal rational curves. Invent. Math. 74(3), 371–418 (1983)
8. 8.
Eisenbud D., Harris J.: A simpler proof of the Gieseker–Petri theorem on special divisors. Invent. Math. 74(2), 269–280 (1983)
9. 9.
Eisenbud D., Harris J.: Limit linear series: basic theory. Invent. Math. 85(2), 337–371 (1986)
10. 10.
Eisenbud D., Harris J.: Irreducibility and monodromy of some families of linear series. Ann. Sci. École Norm. Sup. (4) 20(1), 65–87 (1987)
11. 11.
Farkas G.: Higher ramification and varieties of secant divisors on the generic curve. J. Lond. Math. Soc. (2) 78(2), 418–440 (2008)
12. 12.
Gasper G., Rahman M.: Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 96. Cambridge University Press, New York (2004)Google Scholar
13. 13.
Harris J., Morrison I.: Slopes of effective divisors on the moduli space of curves. Invent. Math. 99(2), 321–355 (1990)
14. 14.
Harris J., Tu L.: Chern numbers of kernel and cokernel bundles. Invent. Math. 75, 467–475 (1984)
15. 15.
Khosla, D.: Moduli of curves with linear series. Harvard doctoral thesis (2005)Google Scholar
16. 16.
Koepf W.: Hypergeometric Summation: An Algorithmic Apporach to Summation and Special Function Identities. Vieweg, Braunschweig/Wiesbaden (1998)Google Scholar
17. 17.
Le Barz P.: Sur les espaces multisécants aux courbes algébriques. Manuscr. Math. 119, 433–452 (2006)
18. 18.
Le Barz P.: Sur une formule de Castelnuovo pur les espaces multisécants. Bollettino U.M.I. 10-B, 381–387 (2007)
19. 19.
Lehn M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136(1), 157–207 (1999)
20. 20.
Macdonald I.G.: Some enumerative formulae for algebraic curves. Proc. Camb. Philos. Soc. 54, 399–416 (1958)
21. 21.
Petkovšek M., Wilf H., Zeilberger D.: A = B. A. K. Peters, Wellesley (1996)
22. 22.
Ran Z.: Curvilinear enumerative geometry. Acta. Math. 155(1–2), 81–101 (1985)
23. 23.
Ran Z.: Geometry on nodal curves. Compos. Math. 141(5), 1191–1212 (2005)
24. 24.
Ran, Z.: Geometry and intersection theory on Hilbert schemes of families of nodal curves. arXiv:0803.4512Google Scholar
25. 25.
Stanley R.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Math. 49. Cambridge University Press, Cambridge (1997)Google Scholar
26. 26.
Shin, H., Zeng, J.: Proof of two combinatorial results arising in algebraic geometry. arXiv:0805.0067Google Scholar