Mathematische Zeitschrift

, Volume 266, Issue 2, pp 363–392

The shifted plactic monoid



We introduce a shifted analog of the plactic monoid of Lascoux and Schützenberger, the shifted plactic monoid. It can be defined in two different ways: via the shifted Knuth relations, or using Haiman’s mixed insertion. Applications include: a new combinatorial derivation (and a new version of) the shifted Littlewood–Richardson Rule; similar results for the coefficients in the Schur expansion of a Schur P-function; a shifted counterpart of the Lascoux–Schützenberger theory of noncommutative Schur functions in plactic variables; a characterization of shifted tableau words; and more.


Plactic monoid Shifted tableau Mixed insertion Schur P-function Shifted Littlewood–Richardson rule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edelman P., Greene C.: Balanced tableaux. Adv. Math. 63, 42–99 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fomin S.: Schur operators and Knuth correspondences. J. Combin. Theory, Ser. A. 72, 277–292 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fomin S., Greene C.: Noncommutative Schur functions and their applications. Discrete Math. 193, 179–200 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fomin S., Kirillov A.N.: Combinatorial B n-analogues of Schubert polynomials. Trans. Am. Math. Soc. 348, 3591–3620 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Greene C.: An extension of Schensted’s theorem. Adv. Math. 14, 254–265 (1974)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Haiman M.D.: On mixed insertion, symmetry, and shifted Young tableaux. J. Combin. Theory Ser. A. 50, 196–225 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Haiman M.D.: Dual equivalence with applications, including a conjecture of Proctor. Discrete Math. 99, 79–113 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Knuth D.E.: Permutations, matrices, and generalized Young tableaux. Pac. J. Math. 34, 709–727 (1970)MATHMathSciNetGoogle Scholar
  9. 9.
    Kraśkiewicz W.: Reduced decompositions in hyperoctahedral groups. C. R. Acad. Sci. Paris Sér. I Math. 309, 903–907 (1989)MATHGoogle Scholar
  10. 10.
    Lam, T.K.: B and D analogues of stable Schubert polynomials and related insertion algorithms, Ph.D. thesis, MIT (1994). Available at
  11. 11.
    Lam T.K.: B n Stanley symmetric functions. Discrete Math. 157, 241–270 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lascoux A., Leclerc B., Thibon J.-Y.: The plactic monoid. In: Lothaire, M. (eds) Algebraic combinatorics on words, Chap. 6., Cambridge University Press, Cambridge (2002)Google Scholar
  13. 13.
    Lascoux A., Schützenberger M.-P.: Le monoïde plaxique. Quad. Ricerca Scient. 109, 129–156 (1981)Google Scholar
  14. 14.
    Sagan B.: Shifted tableaux, Schur Q-functions, and a conjecture of R.P. Stanley. J. Combin. Theory Ser. A. 45, 62–103 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sagan, B.: The ubiquitous Young tableau. In: Stanton, D. (ed.) Invariant Theory and Young Tableaux. pp. 262–298. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Schensted C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961)MATHMathSciNetGoogle Scholar
  17. 17.
    Schützenberger, M.-P. : La correspondence de Robinson, Combinatoire et Représentation du Groupe Symétrique. In: Foata, D. (ed.) Lecture Notes in Math, vol. 579, pp. 59–135 (1977)Google Scholar
  18. 18.
    Schützenberger M.P.: Pour le monoïde plaxique. Math. Inform. Sci. Humaines 140, 5–10 (1997)MATHGoogle Scholar
  19. 19.
    Schützenberger M.-P.: Promotion des morphismes d’ensembles ordonné. Discrete Math. 2, 73–94 (1972)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Stanley R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  21. 21.
    Stembridge J.: Shifted tableaux and the projective representations of symmetric groups. Adv. Math. 74, 87–134 (1989)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Worley, D.R. : A theory of shifted Young tableaux, Ph.D. thesis, MIT (1984). Available at

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations